• 제목/요약/키워드: right quasi-Abelian ring

검색결과 5건 처리시간 0.024초

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.

ON RIGHT QUASI-DUO RINGS WHICH ARE II-REGULAR

  • Kim, Nam-Kyun;Lee, Yang
    • 대한수학회보
    • /
    • 제37권2호
    • /
    • pp.217-227
    • /
    • 2000
  • This paper is motivated by the results in [2], [10], [13] and [19]. We study some properties of generalizations of commutative rings and relations between them. We also show that for a right quasi-duo right weakly ${\pi}-regular$ ring R, R is an (S,2)-ring if and only if every idempotent in R is a sum of two units in R, which gives a generalization of [2, Theorem 4] on right quasi-duo rings. Moreover we find a condition which is equivalent to the strongly ${\pi}-regularity$ of an abelian right quasi-duo ring.

  • PDF

A KIND OF NORMALITY RELATED TO REGULAR ELEMENTS

  • Huang, Juan;Piao, Zhelin
    • 호남수학학술지
    • /
    • 제42권1호
    • /
    • pp.93-103
    • /
    • 2020
  • This article concerns a property of Abelain π-regular rings. A ring R shall be called right quasi-DR if for every a ∈ R there exists n ≥ 1 such that C(R)an ⊆ aR, where C(R) means the monoid of regular elements in R. The relations between the right quasi-DR property and near ring theoretic properties are investigated. We next show that the class of right quasi-DR rings is quite large.

STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS

  • Juan Huang;Tai Keun Kwak;Yang Lee;Zhelin Piao
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1321-1334
    • /
    • 2023
  • An idempotent e of a ring R is called right (resp., left) semicentral if er = ere (resp., re = ere) for any r ∈ R, and an idempotent e of R∖{0, 1} will be called right (resp., left) quasicentral provided that for any r ∈ R, there exists an idempotent f = f(e, r) ∈ R∖{0, 1} such that er = erf (resp., re = fre). We show the whole shapes of idempotents and right (left) semicentral idempotents of upper triangular matrix rings and polynomial rings. We next prove that every nontrivial idempotent of the n by n full matrix ring over a principal ideal domain is right and left quasicentral and, applying this result, we can find many right (left) quasicentral idempotents but not right (left) semicentral.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.