• Title/Summary/Keyword: right perfect ring

Search Result 10, Processing Time 0.019 seconds

RINGS WITH VARIATIONS OF FLAT COVERS

  • Demirci, Yilmaz Mehmet;Turkmen, Ergul
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.799-812
    • /
    • 2019
  • We introduce flat e-covers of modules and define e-perfect rings as a generalization of perfect rings. We prove that a ring is right perfect if and only if it is semilocal and right e-perfect which generalizes a result due to N. Ding and J. Chen. Moreover, in the light of the fact that a ring R is right perfect if and only if flat covers of any R-module are projective covers, we study on the rings over which flat covers of modules are (generalized) locally projective covers, and obtain some characterizations of (semi) perfect, A-perfect and B-perfect rings.

Finitely Generated Modules over Semilocal Rings and Characterizations of (Semi-)Perfect Rings

  • Chang, Chae-Hoon
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.143-154
    • /
    • 2008
  • Lomp [9] has studied finitely generated projective modules over semilocal rings. He obtained the following: finitely generated projective modules over semilocal rings are semilocal. We shall give necessary and sufficient conditions for finitely generated modules to be semilocal modules. By using a lifting property, we also give characterizations of right perfect (semiperfect) rings. Our main results can be summarized as follows: (1) Let M be a finitely generated module. Then M has finite hollow dimension if and only if M is weakly supplemented if and only if M is semilocal. (2) A ring R is right perfect if and only if every flat right R-module is lifting and every right R-module has a flat cover if and only if every quasi-projective right R-module is lifting. (3) A ring R is semiperfect if and only if every finitely generated flat right R-module is lifting if and only if RR satisfies the lifting property for simple factor modules.

X-LIFTING MODULES OVER RIGHT PERFECT RINGS

  • Chang, Chae-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • Keskin and Harmanci defined the family B(M,X) = ${A{\leq}M|{\exists}Y{\leq}X,{\exists}f{\in}Hom_R(M,X/Y),\;Ker\;f/A{\ll}M/A}$. And Orhan and Keskin generalized projective modules via the class B(M, X). In this note we introduce X-local summands and X-hollow modules via the class B(M, X). Let R be a right perfect ring and let M be an X-lifting module. We prove that if every co-closed submodule of any projective module P contains Rad(P), then M has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang's result [9, Theorem 3.4]. Let X be an R-module. We also prove that for an X-hollow module H such that every non-zero direct summand K of H with $K{\in}B$(H, X), if $H{\oplus}H$ has the internal exchange property, then H has a local endomorphism ring.

SOME PROPERTIES ON THE CHARACTERISTIC RING-MODULES

  • PARK CHIN HONG;LIM JONG SEUL
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.771-778
    • /
    • 2005
  • In this paper we shall give some group properties derived from the characteristic ring-module $_X(M)$, using the fact that $_X(M)_H$ is a conjugate to $_X(M)_{Ha}$ when M is an invertible right R-module. Also we shall prove that_X(M)$ is group-isomorphic to TR and some normal subgroup properties if M is invertible and R is commutative.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

ON A QUASI-POWER MODULE

  • PARK CHIN HONG;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.679-687
    • /
    • 2005
  • In this paper we shall give a new definition for a quasi-power module P(M) and discuss some properties for P(M). The quasi-power module P(M) is a direct sum of invertible quasi-submodules C(H)'s of P(M) and then the quasi-submodule C(H) is also a direct sum of strongly cyclic quasi-submodules of C(H). When M is a quasi-perfect right R-module, we shall see that the quasi-power module P(M) is invertible.

GORENSTEIN-INJECTORS, GORENSTEIN-FLATORS

  • Gu, Qinqin;Zhu, Xiaosheng;Zhou, Wenping
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.691-704
    • /
    • 2010
  • Over a ring R, let $P_R$ be a finitely generated projective right R-module. Then we define the G-injector (G-projector) if $P_R$ preservers Gorenstein injective modules (Gorenstein projective modules), the Gflator if $P_R$ preservers Gorenstein flat modules. G-injector (G-flator) and G-injector are characterized focus primarily on the cases where R is a Gorenstein ring, and under this condition we also study the relations between the injector (projector, flator) and the G-injector (G-projector, G-flator). Over any ring we also give the characteristics of G-injector (G-flator) by the Gorenstein injective (Gorenstein flat) dimensions of modules.

UNIFORM AND COUNIFORM DIMENSION OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Zhao, Renyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1067-1079
    • /
    • 2012
  • Let M be a right R-module, (S, ${\leq}$) a strictly totally ordered monoid which is also artinian and ${\omega}:S{\rightarrow}Aut(R)$ a monoid homomorphism, and let $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ denote the generalized inverse polynomial module over the skew generalized power series ring [[$R^{S,{\leq}},{\omega}$]]. In this paper, we prove that $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ has the same uniform dimension as its coefficient module $M_R$, and that if, in addition, R is a right perfect ring and S is a chain monoid, then $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ has the same couniform dimension as its coefficient module $M_R$.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.