• Title/Summary/Keyword: right(left) ideal

Search Result 127, Processing Time 0.025 seconds

ON RIGHT(LEFT) DUO PO-SEMIGROUPS

  • Lee, S.K.;Park, K.Y.
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.147-153
    • /
    • 2003
  • We investigate some properties on right(resp. left) duo $po$-semigroups.

  • PDF

On SF-rings and Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.397-406
    • /
    • 2013
  • A ring R is called a left (right) SF-ring if simple left (right) R-modules are flat. It is still unknown whether a left (right) SF-ring is von Neumann regular. In this paper, we give some conditions for a left (right) SF-ring to be (a) von Neumann regular; (b) strongly regular; (c) division ring. It is proved that: (1) a right SF-ring R is regular if maximal essential right (left) ideals of R are weakly left (right) ideals of R (this result gives an affirmative answer to the question raised by Zhang in 1994); (2) a left SF-ring R is strongly regular if every non-zero left (right) ideal of R contains a non-zero left (right) ideal of R which is a W-ideal; (3) if R is a left SF-ring such that $l(x)(r(x))$ is an essential left (right) ideal for every right (left) zero divisor x of R, then R is a division ring.

On the Definition of Intuitionistic Fuzzy h-ideals of Hemirings

  • Rahman, Saifur;Saikia, Helen Kumari
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.435-457
    • /
    • 2013
  • Using the Lukasiewicz 3-valued implication operator, the notion of an (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring is introduced, where ${\alpha},{\beta}{\in}\{{\in},q,{\in}{\wedge}q,{\in}{\vee}q\}$. We define intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of a hemiring R and investigate their various properties. We characterize intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) and (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring R by its level sets. We establish that an intuitionistic fuzzy set A of a hemiring R is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$)-intuitionistic fuzzy left (right) $h$-ideal of R if and only if A is an intuitionistic fuzzy left (right) $h$-ideal with thresholds (0, 1) (or (0, 0.5) or (0.5, 1)) of R respectively. It is also shown that A is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$))-intuitionistic fuzzy left (right) $h$-ideal if and only if for any $p{\in}$ (0, 1] (or $p{\in}$ (0, 0.5] or $p{\in}$ (0.5, 1] ), $A_p$ is a fuzzy left (right) $h$-ideal. Finally, we prove that an intuitionistic fuzzy set A of a hemiring R is an intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of R if and only if for any $p{\in}(s,t]$, the cut set $A_p$ is a fuzzy left (right) $h$-ideal of R.

GENERAL TYPES OF (α,β)-FUZZY IDEALS OF HEMIRINGS

  • Jun, Y.B.;Dudek, W.A.;Shabir, M.;Kang, Min-Su
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.413-439
    • /
    • 2010
  • W. A. Dudek, M. Shabir and M. Irfan Ali discussed the properties of (${\alpha},{\beta}$)-fuzzy ideals of hemirings in [9]. In this paper, we discuss the generalization of their results on (${\alpha},{\beta}$)-fuzzy ideals of hemirings. As a generalization of the notions of $({\alpha},\;\in{\vee}q)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q)$-fuzzy k-ideals, the concepts of $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideals are defined, and their characterizations are considered. Using a left (right) ideal (resp. h-ideal, k-ideal), we construct an $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideal (resp. $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideal, $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideal). The implication-based fuzzy h-ideals (k-ideals) of a hemiring are considered.

IDEAL THEORY IN ORDERED SEMIGROUPS BASED ON HESITANT FUZZY SETS

  • Ahn, Sun Shin;Lee, Kyoung Ja;Jun, Young Bae
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.783-794
    • /
    • 2016
  • The notions of hesitant fuzzy left (resp., right, bi-, quasi-) ideals are introduced, and several properties are investigated. Relations between a hesitant fuzzy left (resp., right) ideal,a hesitant fuzzy bi-ideal and a hesitant fuzzy quasi-ideal are discussed. Characterizations of hesitant fuzzy left (resp., right, bi-, quasi-) ideals are considered.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

ON INJECTIVITY AND P-INJECTIVITY

  • Xiao Guangshi;Tong Wenting
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.299-307
    • /
    • 2006
  • The following results ale extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $_R(M/Z(M))$ is projective, where Z(M) is the left singular submodule of $_{R}M$; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is Y J-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.