• Title/Summary/Keyword: rig test

Search Result 493, Processing Time 0.075 seconds

Performance of a Surface Densified P/M Gear for a Passenger Car Gear Box

  • Rau, Gunter;Sigl, Lorenz S.;Mork, Gerold;Wattenberg, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.389-390
    • /
    • 2006
  • Selective surface densification is a tool for improving the mechanical properties of PM steels, such that the requirements for highly loaded gears can be matched. This paper describes the manufacturing and the properties of a helical P/M gear. The gear performance was evaluated on a 3-shaft back to back test rig, on a load bearing test rig and on a sound test bench. The results of these tests are presented and compared to data obtained from solid steel gear with identical geometry and surface quality. This comparison indicates that P/M gears have a load bearing capacity and noise level which are both well comparable to solid steel gears.

  • PDF

Development of Disassembly Tool for Intermediate Examination of Nuclear Fuel Rods (핵연료봉 중간검사를 위한 장탈착 툴 개발)

  • Hong, Jintae;Heo, Sung-Ho;Kim, Ka-Hye;Park, Sung-Jae;Joung, Chang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.443-449
    • /
    • 2014
  • To check the characteristics of nuclear fuels during an irradiation test, the nuclear fuel rod needs to be disassembled from the test rig located in the pool of the research reactor. Then, the disassembled fuel rod is delivered to the hot cell for intermediate examination. A fuel rod that passes the intermediate examination is delivered to the reactor pool to be reassembled into the test rig. The irradiation test is resumed with the reassembled test rig. Because nuclear fuel rods irradiated by neutrons are highly radioactive, all the disassembly and reassembly processes should be carried out in the pool of the research reactor to prevent operators being exposed to radiation. In particular, because a test rig is 5.4-m long and the reactor pool of HANARO is 6-m deep, special tools need to be developed for performing the disassembly and reassembly processes. In this study, a new assembly design of nuclear fuel rods for intermediate examination is introduced. Furthermore, tools for treating the irradiated fuel rod assembly are introduced, and their performance is verified by an out pile test.

Developed a test rig for studying the hover performance of a coaxial propeller (동축반전 프로펠러의 제자리 비행 성능연구를 위한 시험장치 개발)

  • Song, Youn-Ha;Song, Jae-Rim;Kim, Deog-Kowan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.560-562
    • /
    • 2017
  • This paper presents the development and test results of a test rig for confirming the hover performance of the coaxial propeller which is applied to the drone in order to carry out the mission that requires high payload such as the development of the courier drones. the performance of each propeller was measured by varying the thrust and torque according to the H/D ratio. the Thrust sensor and torque sensor were used to measure the thrust and torque generated when the propeller rotated, and a photo sensor was used to measure the rpm. it used the data acquisition system to acquire data from each sensor, and used the Labview softwaer to control data storage, monitoring and BLDC motor control. In the test, each propeller meansured the figure of mefit according to the chansge of the interval at the same rpm.

  • PDF

Experimental Evaluation of Direct Measurement for Excitation Forces Acting on the Hard-points of Suspension System to Predict Road-noise Performance (로드노이즈 성능 예측을 위한 현가장치 하드포인트의 가진력 직접 측정법에 대한 실험적 평가)

  • Kang, Yeon June;Kim, Heesoo;Song, David P.;Ih, Kang-Duck;Kim, HyoungGun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • NVH engineering has become a hot issue due to radical technology changes and development in automotive industry since customers' expectations and needs for their vehicle is taken to a higher level. However, the source identification and quantification of the road noise within a vehicle is still not at the level where it needs to be to meet their expectations due to its' complex transfer path and difficulties in path optimization. The primary focus of this research is on direct force obtaining method at suspension hard points using suspension test rig. Directly obtained forces at suspension to body mounting points are critical and crucial for determining the effects of design changes of the suspension has on road noise performance. Direct force obtaining method has its limitation in sensor installation within an actual vehicle therefore, many has been indirectly calculating forces using full matrix inversion method or dynamic stiffness method. In this study, to circumvent this limitation, a suspension rig is used. Then, the suspension rig is verified through a comparative analysis of its dynamic behavior between the actual vehicle by cleat test on chassis dynamometer.

Vibration Health Monitoring of Helicopter Transmission Systems at Westland Helicopter Ltd.

  • Kang, Chung-Shin;Choi, Sun-Woo;Ahn, Seok-Min;Horsey, M.W;Stuckey, M.J
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.48-61
    • /
    • 2000
  • Korea Aerospace Research Institute (KARI) have gained experience with Helicopter Vibration Health Monitoring (VHM) System technology with the help of UK GKN-WHL. GKN-WHL have had many years of experience with the research and development of vibration analysis techniques to improve the health monitoring of helicopter transmissions. This activity was targeted at transmission rig testing at first, but the techniques have been progressively developed where they are now used as a part of integrated Health and Usage Monitoring (HUM) systems on many types of in-service and new helicopters. The technique development process has been considerably aided by an ever expanding database of transmission monitoring experience from both the rig testing and aircraft operations. This experience covers a wide range of failure types from naturally occurring faults to crack propagation studies and covering a wide range of transmission configurations. Primarily based on accelerometer signals GKN-WHL's vibration analysis methods have also been applied to a variety of other sensor types. The transition from an experimental environment to operational VHM systems has been a lengthy process, there being a need to demonstrate technique reliability as well as effectiveness to both regulatory (Airworthiness Authority) and commercial organizations. Another important feature of this process has been the development of close relationships with a number of VHM system hardware and software suppliers. Such an experienced GKN-WHL provides various raw vibration data which was acquired from transmission ground test rig and allow KARI to develop it's own analysis program. KARI made a program and then analyzed the data to coma pre with the results of GKN-WHL. The KARI's results both time domain signals and statistical values show comparable to GKN's.

  • PDF

Vibration Analysis of a Turbo Compressor Test Rig (터보 압축기 성능시험을 위한 리그 진동 분석)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok;Lee, Jin-Kun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.98-107
    • /
    • 2009
  • Vibration analysis of a turbo compressor test rig was carried out in order to investigate the vibrational characteristics of the compressor facility in KARI before conducting the compressor performance test of 5MW-class gas turbine engine for generation. The overall compressor test facility consists largely of inlet and exit ducts, a test section and a driving part. Vibration was measured with accelerometers at the test section and the driving part, especially at a main housing, a collector, a bearing carrier, a torquemeter, a gearbox, and an electric motor. Gap sensors are also installed to measure the rotordynamic characteristics of compressor shaft.

  • PDF

Design and Construction of a High Temperature Creep Tester for Thin Film Specimens (박막시험편용 고온 크리프 시험기의 설계 및 제작)

  • Ko, Gyoung-Dek;Lee, Sang-Shin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.253-259
    • /
    • 2007
  • A new material tester has been developed to measure mechanical properties of thin film specimens at high temperature. It is useful for observing oxide film growth or local deformation on the surface, and for measuring creep strength. Main characteristics of the tester is as follows; First, high temperature is achieved by Joule heating generated by electricity passing through the specimen, which does not need to enclose the specimen by a furnace or a heating chamber. The exposed specimen enables one to observe the surface during the test. Because the overall size of the test rig is compact, the whole test rig can be placed in a chamber for environmental controlled tests. The loading device is from a level scales. Not only static load with fixed counter weight, but also variable load by moving counter weight controlled remotely can be applied for an ordinary creep test and creep-fatigue test, respectively. The detail of the construction, operation principle, and the specification are described. And also, an example of test result obtained using the creep tester is presented.

Running Stability Assessment of a Railway Vehicle using Roller Rig Test (주행시험대 시험을 이용한 철도차량의 주행안정성 평가 방법 고찰)

  • Park, Joon-Hyuk;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.577-587
    • /
    • 2017
  • In the design process of dynamic characteristics of a railway vehicle, demand for analysis, testing and estimation methods of running stability are increasing as railway vehicle speed is increasing. Critical speed tests and estimation have been carried out using computer simulation or special test facilities, like roller rigs, because real track testing at critical speed is very dangerous. This paper introduces a test and assessment method for critical speed and estimates the validity using several roller rig tests. The test results show that it is difficult to estimate the critical speed using safety and instability assessment method in UIC 518, but that there is good agreement between the reduction of the equivalent damping ratio and the critical speed.

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.

Structural performance of cold-formed steel composite beams

  • Dar, M. Adil;Subramanian, N.;Anbarasu, M.;Dar, A.R.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.545-554
    • /
    • 2018
  • This study presents a novel method of improving the strength and stiffness of cold-formed steel (CFS) beams. Flexural members are primary members in most of the structures. Hence, there is an urgent need in the CFS industry to look beyond the conventional CFS beam sections and develop novel techniques to address the severe local buckling problems that exist in CFS flexural members. The primary objective of this study was to develop new CFS composite beam sections with improved structural performance and economy. This paper presents an experimental study conducted on different CFS composite beams with simply supported end conditions under four point loading. Material properties and geometric imperfections of the models were measured. The test strengths of the models are compared with the design strengths predicted by using Australian/New Zealand Standard for cold-formed steel structures. Furthermore, to ensure high precision testing, a special testing rig was also developed for testing of long span beams. The description of test models, testing rig features and test results are presented here. For better interpretation of results, a comparison of the test results with a hot rolled section is also presented. The test results have shown that the proposed CFS composite beams are promising both in terms of better structural performance as well as economy.