• Title/Summary/Keyword: ride

Search Result 945, Processing Time 0.029 seconds

A Study on Evaluation Method of Ride Comfort Considering Superimposition of Vertical and Horizontal Curve (종곡선과 평면곡선 경합을 고려한 승차감 평가기법에 관한 연구)

  • Um, Ju-Hwan;Yang, Sin-Chu;Kim, Eun-Kyum;Choi, Il-Yoon;Kang, Yun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.309-316
    • /
    • 2010
  • When the horizontal and vertical curves are superimposed in railway alignments, which affects the running stability, ride comfort, and track maintenance costs. However, when designing new lines or realigning existing ones, there are many cases of superimposition caused by the existing fixed points (bridge, tunnel, turnout, and catenary system, etc) on the conventional lines and undesirable impacts on the environment, etc. In this study, when the horizontal and vertical curves are superimposed, in order to optimize the horizontal curve in aspect of the ride comfort, the object function was developed and verified by vehicle dynamic analysis. Also, the solution algorithm for simplified evaluation method was presented.

A Study on the Optimal Setting Method of Directional Overcurrent Relay Considering Fault Ride Through of Distributed Generation (분산전원의 Fault Ride Through를 고려한 방향성 과전류 계전기 최적 정정법에 관한 연구)

  • Song, Jin-Sol;Cho, Gyu-Jung;Kim, Ji-Soo;Shin, Jea-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1002-1008
    • /
    • 2018
  • Fault Ride Through(FRT) requirement prevents disconnections of distributed generations during the specific time on disturbance condition for system stability. However, since there is a limitation to the FRT capability of distributed generation, and the protection system needs to clear the fault quickly before the distributed generation is disconnected. Therefore, this paper proposes a novel optimal setting method of directional overcurrent relay considering FRT of distributed generation. The proposed method reduces the probability of disconnections of the distributed generation in disturbance without additional equipment considering the FRT capability of the distributed generation by calculating the optimal relay setting through the Genetic Algorithm(GA).

Analysis on Safety and Ride Comfort of KTX According to Track Surface (고저틀림에 따른 KTX 주행거동 특성 분석)

  • Choi, Il-Yoon;Koo, Dong-Hoe;Hwang, Seok-Yeol;Lim, Yun-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.583-588
    • /
    • 2010
  • Track irregularities is one of key factors influencing running behavior of train. In order to ensure safety and ride comfort, it is highly important that relationship between track irregularity and running behavior of vehicle is identified and the criteria for track irregularities is adequately established. Numerical analysis was conducted to investigate influence of surface on running behavior of KTX and various wavelength and amplitude of surface were considered in numerical analysis. Derailment, lateral load, bogie acc., body acc. of numerical analysis results were investigated to evaluate the effect on track profile on safety and ride comfort of KTX.

Vibration Ride Quality Optimization of a Suspension Seat System Using Genetic Algorithm (유전자 알고리즘을 이용한 SUSPENSION SEAT SYSTEM의 진동 승차감 최적화)

  • Park, S.K.;Choi, Y.H.;Choi, H.O.;Bae, B.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.584-589
    • /
    • 2001
  • This paper presents the dynamic parameter design optimization of a suspension seat system using the genetic algorithm. At first, an equivalent 1-D.O.F. mass-spring-damper model of a suspension seat system was constructed for the purpose of its vibration analysis. Vertical vibration response and transmissibility of the equivalent model due to base excitations, which are defined in the ISO's seat vibration test codes, were computed. Furthermore, seat vibration test, that is ISO's damping test, was carried out in order to investigate the validity of the equivalent suspension seat model. Both analytical and experimental results showed good agreement each other. For the design optimization, the acceleration transmissibility of the suspension seat model was adopted as an object function. A simple genetic algorithm was used to search the optimum values of the design variables, suspension stiffness and damping coefficient. Finally, vibration ride performance test results showed that the optimum suspension parameters gives the lowest vibration transmissibility. Accordingly the genetic algorithm and the equivalent suspension seat modelling can be successfully adopted in the vibration ride quality optimization of a suspension seat system.

  • PDF

Design of a Disturbance Observer based Control System to Ensure Robust Stability of Quarter-Car Suspensions (1/4 차량 현가 장치의 강인 안정성을 보장하는 외란관측기 기반의 제어 시스템 설계)

  • So, Sang Gyun;Ryoo, Jung Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.995-1001
    • /
    • 2016
  • The vehicle suspension system plays a very important part related with vehicle ride and handling. To improve the vehicle ride and handling many researches have been progressed from various damping parameter tuning techniques to the development of the electronic controlled suspension systems. In this paper, as one of the ride performance improvement a disturbance observer(DOB) based control system is applied to the quarter car vehicle model in order to show that the DOB can obtain good vibration isolation characteristics. First, the robust stability criterion for the DOB is introduced in detail, and then how DOB is applied to the 1/4 car vehicle model is represented, and finally to confirm the effectiveness of the DOB in vehicle ride performance improvement a computer simulation is carried out for various driving conditions.

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

A Study on the Development of High Stiffness Body for Suspension Performance (서스펜션 성능 확보를 위한 고강성 차체 개발 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.358-361
    • /
    • 2004
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy. This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band, we can suggest the design guideline about Is cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between Handling and road noise. It makes it possible to design the good handling performance vehicle at initial design stage and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Recognition and acceptance concerning the introduction of preceptorship to the ambulance ride practice (구급차동승실습 시 프리셉터 제도의 도입에 관한 인식과 수용도)

  • Choi, Eun-Sook
    • The Korean Journal of Emergency Medical Services
    • /
    • v.18 no.1
    • /
    • pp.67-81
    • /
    • 2014
  • Purpose : The purpose of the study is to provide the basic data for preceptorship education program development by analyzing the recognition and acceptance concerning the introduction of preceptorship to ambulance ride practice of 119 EMT-paramedics in Korea. Methods : A self-reported questionnaire was filled out by 157 paramedics in the fire fighters from December 21, 2013 to February 12, 2014. The questionnaire consisted of 31 questions and the data were analyzed by SPSS version 21.0. Results : Most of the subjects answered the positive choice and were very interested in the introduction of preceptorship in the prehospital settings. Mean of preceptorship acceptance level was 3.64 points in 5 points Likert scale and 75.4% of the subjects were able to explain the preceptorship. 57.4% of the subjects considered that preceptorship was an effective training method. Conclusion : Most of the subjects agreed that the preceptorship is very important to the education of paramedic students. The preceptorship education program development will be the basis of ambulance ride practice.

Rope Modeling and Verification for the Robotic Platform of the Wall Cleaning Robot (ROPE RIDE) (외벽청소로봇(ROPE RIDE)의 등강 로봇 플랫폼을 위한 로프 모델링 및 검증)

  • Yoo, Sungkeun;Kim, Taegyun;Seo, Myoungjae;Kim, Hwa Soo;Seo, TaeWon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.191-195
    • /
    • 2019
  • This paper presents a rope modeling and verification for the robotic platform of the wall cleaning robot (ROPE RIDE). ROPE RIDE has the characteristics of climbing up and down using a rope fixed on the roof like traditional workers. In order to perform a stable operation with a wall cleaning robot, it is necessary to estimate the position of the robot in a vertical direction. However, due to the high coefficient of extension and nonlinearity of the climbing rope, it is difficult to predict the behavior of the rope. Thus, in this paper, the mathematical modeling of the rope was carried out through the preliminary experiment. Extensive experiments using different types of rope were used to determine the parameters of the constitutive equation of climbing ropes. The validity of the determined parameters of various ropes was verified through the experiment results.

The Optimal Aiming Point that is Available in Shooting Game based a Bodily Sensation Type Arcade : Focused on Interactive Ride Gun (체감형 아케이드 기반 슈팅 게임에서 적용가능한 최적의 조준점 : 인터렉티브 라이드 건(Interactive Ride Gun)을 중심으로)

  • Choi, Yong-seok;Joo, Woo-seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.531-532
    • /
    • 2014
  • The visibility of the aiming point used in shooting game based on the present interactive gun ride is too low. This research tries to improve the visibility to apply the aiming point used in FPS(Fisrt Person Shooting) game to interactive gun shooting game in order to overcome the problem of an existing bodily sensation type arcade game. This research try to investigate the effective visibility through the experiment that 20's college students took part in. We identify the optimal aiming point from the results of this experiment. We will determine the compatability to use in the real commercial game to apply it to the ride based shooting game.

  • PDF