• Title/Summary/Keyword: rice-straw

Search Result 1,314, Processing Time 0.031 seconds

Estimation of Paddy CH4 Emissions through Drone-Image-Based Identification of Paddy Rice Straw Application & Winter Crop Cultivation (Drone 영상을 이용한 논 필지 볏짚 환원-동계 재배 확인 및 CH4 배출량 산정)

  • Jang, Seongju;Park, Jinseok;Hong, Rokgi;Hong, Joopyo;Kwon, Chaelyn;Song, Inhong
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.21-33
    • /
    • 2021
  • Rice straw management and winter crop cultivation are crucial components for the accurate estimation of paddy methane emissions. Field-based extensive investigation of paddy organic matter management requires enormous efforts however it becomes more feasible as drone technology advances. The objectives of this study were to identify paddy fields of straw application and winter crop cultivation using drone images and to apply for the estimation of yearly methane emission. Total 35 sites of over 150ha in area were selected nationwide as the study areas. Drone images of the study sites were taken twice during summer and winter in 2018 through 2019: Summer images were used to identify paddy cultivation areas, while winter images for straw and winter crop practices. Drone-image-based identification results were used to estimate paddy methane emission and compared with conventional method. As the result, mean areas for paddy, straw application and winter crop cultivation were 118.9ha, 12.0ha, and 11.3ha, respectively. Overall rice straw application rate were greater in Gyeonggi-do(20%) and Chungcheongnam-do(12%), while winter crop cultivation was greatest in Gyeongsangnam-do(30%) and Jeolla-do(27%). Yearly mean methane emission was estimated to be 226.2kg CH4/ha/yr in this study and about 32% less when compared to 331.8kg CH4/ha/yr estimated with the conventional method. This was primarily because of the lower rice straw application rate observed in this study, which was less than quarter the rate of 55.62% used for the conventional method. This indicates the necessity to use more accurate statistics of rice straw application as well as winter crop practices into paddy methane emission estimation. Thus it is recommended to further study to link drone technology with satellite image analysis in order to identify organic management practices at a paddy field level over extensive agricultural area.

The Origin of Meju Fungi - Fungal Diversity of Soybean, Rice Straw and Air for Meju Fermentation

  • Kim, Dae-Ho;Lee, Jong-kyu;Hong, Seung-Beom
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.32-32
    • /
    • 2014
  • Meju is a brick of dried fermented soybeans and is the core material for Jang such as Doenjang and Ganjang. Jang is produced by addition of salty water to Meju and is considered the essential sauces of authentic Korean cuisine. Meju is fermented by diverse microorganisms such as bacteria, fungi and yeasts. It is known that fungi play an important role in the Meju fermentation and they degrade macromolecules of the soybeans into small nutrient molecules. In previous study, 26 genera and 0 species were reported as Meju fungi. However, it is not comprehensively examined where the fungi present on the Meju are originated. In order to elucidate the origin of the fungi present on the Meju, the mycobiota of 500 samples soybean kernels, 296 rice straw pieces and air samples of Jang factories was determined in 0, 2 and 7 Jang factories respectively. Forty-one genera covering 86 species were isolated from the soybeans and 33 species were identical with the species from Meju. From sodium hypochlorite untreated soybeans, Eurotium herbariorum, Eurotium repens, Cladosporium tenuissimum, Fusarium fujikuroi, Aspergillus oryzae/flavus and Penicillium steckii were the predominant species. In case of sodium hypochlorite-treated soybeans, Eurotium herbariorum, E. repens and Cladosporium tenuissimum were the predominant species. Of the 4 genera and 86 species isolated from soybeans, 3 genera and 33 species were also found in Meju. Thirty-nine genera and 92 species were isolated from the rice straws and 40 species were identical with the species from Meju. Fusarium asiaticum, Cladosporium cladosporioides, Aspergillus tubingensis, A. oryzae, E. repens and Eurotium chevalieri were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study, were also isolated from Meju. Especially, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum and Penicillium polonicum that are abundant species in Meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum and P. polonicum that are abundant in low temperature fermentation process of Meju fermentation, were frequently isolated from rice straw incubated at $5^{\circ}C$ and $25^{\circ}C$, while A. oryzae, E. repens and E. chevalieri that are abundant in high temperature fermentation process of Meju fermentation, were frequently isolated from rice straw incubated at $25^{\circ}C$ and $35^{\circ}C$. This suggests that the mycobiota of rice straw have a large influence in mycobiota of Meju. Thirty-nine genera and 92 species were isolated from the air of Jang factories and 34 species were identical with the species from Meju. In outside air of the fermentation room, Cladosporium sp. and Cladosporium cladosporioides were the dominant species, followed by Cladosporium tenuissimum, Eurotium sp., Phoma sp. Sistotrema brinkmannii, Alternaria sp., Aspergillus fumigatus, Schizophyllum commune, and Penicillium glabrum. In inside air of the fermentation room, Cladosporium sp., Aspergillus oryzae, Penicillium chrysogenum, A. nidulans, Aspergillus sp., C. cladosporioides, Eurotium sp., Penicillium sp., C. tenuissimum, A. niger, E. herbariorum, A. sydowii, and E. repens were collected with high frequency. The concentrations of the genus Aspergillus, Eurotium and Penicillium were significantly higher in inside air than outside air. From this results, the origin of fungi present on Meju was inferred. Of the dominant fungal species present on Meju, Lichtheimia ramosa, Mucor circinelloides, Mucor racemosus, and Scopulariopsis brevicaulis are thought to be originated from outside air, because these species are not or are rarely isolated from rice straw and soybean; however, they were detected outside air of fermentation room and are species commonly found in indoor environments. However, A. oryzae, P. polonicum, E. repens, P. solitum, and E. chevalieri, which are frequently found on Meju, are common in rice straw and could be transferred from rice straw to Meju. The fungi grow and produce abundant spores during Meju fermentation, and after the spores accumulate in the air of fermentation room, they could influence mycobiota of Meju fermentation in the following year. This could explain why concentrations of the genus Aspergillus, Eurotium, and Penicillium are much higher inside than outside of the fermentation rooms.

  • PDF

Effects of Rice Straw on the Microflora in Submerged Soil -I. Effects of Rice Straw on the Microflor in Relation to Nitrogen Metabolism in Submerged Soil (볏짚 시용(施用)이 논토양(土壤)의 미생물상(微生物相)에 미치는 영향(影響) -I. 질소대사(窒素代謝)에 관여(關與)하는 미생물(微生物)과 토양성분(土壤成分))

  • Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 1984
  • These studies were carried out to investigate the effects of rice straw on microflora in relation to nitrogen metabolism in submerged soil. Rice plants were cultured in submerged soil to which rice straw was applied. In the submerged soil applied with rice straw the value of Eh lowered. pH was higher in the upper layer than in the lower. The content of iron(II) in submerged soil increased, while that of ammonium nitrogen decreased when rice straw was applied and nitrate-nitrogen was hardly detected during the rice cultivation period Under application of rice straw the number of denitrifying bacteria observed to increase at the early growing stage of rice plant and to decrease thereafter, and that of nitrate reducing bacteria increased at the late growing stage. The number of ammonium oxidizing bacteria and that of nitrite oxidizing bacteria decreased continually but the latter were rather sharply decreased.

  • PDF

Effects of Exogenous Enzymes on Ruminal Fermentation and Degradability of Alfalfa Hay and Rice Straw

  • Yang, H.E.;Son, Y.S.;Beauchemin, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.56-64
    • /
    • 2011
  • This study was conducted to evaluate the use of exogenous enzymes as a potential means of improving the ruminal digestion (i.e., degradability) of alfalfa hay and rice straw. Twenty six enzyme-additives were examined in terms of protein concentration and enzymic activities on model substrates. The exogenous enzymes contained ranges of endoglucanase, xylanase, ${\beta}$-glucanase, ${\alpha}$-amylase, and protease activities. Six of the enzyme additives were chosen for further investigation. The enzyme additives and a control without enzyme were applied to mature quality alfalfa hay substrate and subsequently incubated in rumen batch cultures. Five of the enzyme additives (CE2, CE13, CE14, CE19, and CE24) increased total gas production (GP) at 48 h of incubation compared to the control (p<0.05). The two additives (CE14 and CE24) having the greatest positive effects on alfalfa hay dry matter, neutral detergent fibre (NDF) and acid detergent fibre (ADF) degradability were further characterized for their ability to enhance degradation of low quality forages. The treatments CE14, CE24, a 50:50 combination of CE14 and CE24 (CE14+24), and control (no enzyme) were applied to mature alfalfa hay and rice straw. For alfalfa hay, application of the two enzyme additives, alone and in combination, increased GP compared to the control at 48 h fermentation (p<0.05), whereas only CE14 and CE14+24 treatments improved GP from rice straw (p<0.05). Rumen fluid volatile fatty acid concentrations throughout the incubation of rice straw were analyzed. Acetate concentration was slightly lower (p<0.05) for CE14${\times}$CE24 compared to the control, although individually, CE14 and CE24 acetate concentrations were not different from the control. Increases (p<0.05) in alfalfa hay NDF degradability measured at 12 and 48 h of incubation occurred only for CE14 (at 12 h) and for CE14+24 (at 12 and 48 h). Similarly, ADF degradability increased (p<0.05) with CE14 and CE14+24. As for rice straw, increased DM degradability was observed at 12 and 48 h of incubation for all enzyme treatments with an exception for CE14 at 12 h. The degradability of NDF was improved by all the enzyme treatments at either incubation time, while ADF degradability was only enhanced at 48 h. Overall, the enzymes led to enhanced digestion of mature alfalfa and there was evidence of improved digestibility of rice straw, an even lower quality forage.

Effects of Increasing Level of Dietary Rice Straw on Chewing Activity, Ruminal Fermentation and Fibrolytic Enzyme Activity in Growing Goats

  • Wanga, M.;Zhaoa, X.G.;Tan, Z.L.;Tang, S.X.;Zhou, C.S.;Sun, Z.H.;Han, X.F.;Wang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1022-1027
    • /
    • 2010
  • Effects of increasing dietary rice straw on chewing activity, ruminal fermentation, and fibrolytic enzyme activity in growing goats were investigated in a $4{\times}4$ Latin Square experiment. The goats were offered four diets with an increasing proportion of rice straw (i.e. 0.05, 0.10, 0.15 and 0.20, respectively, on dry matter basis). Increasing level of rice straw increased ($P_{linear\;effect}$ <0.05) the time spent on eating, ruminating, and chewing. The ruminal pH and acetate: propionate ratio were increased ($P_{linear\;effect}$ <0.05), while the $NH_3$-N concentration was decreased ($P_{linear\;effect}$ <0.01). Increasing level of rice straw in the diet increased ($P_{linear\;effect}{\leq}0.01$) molar proportion of acetate and isovalerate, and decreased ($P_{linear\;effect}$ <0.01) molar proportion of propionate. The CMCase, xylanase and cellobiase activities in the rumen were decreased ($P_{linear\;effect}$ <0.05) with increasing level of dietary rice straw, whereas the avicelase activity was increased ($P_{linear\;effect}$ <0.01). In summary, increased level of rice straw elevated the dietary neutral detergent fibre (NDF) content in the diet and had a great impact on chewing activity and ruminal fermentation.

Development of a new lactic acid bacterial inoculant for fresh rice straw silage

  • Kim, Jong Geun;Ham, Jun Sang;Li, Yu Wei;Park, Hyung Soo;Huh, Chul-Sung;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.950-956
    • /
    • 2017
  • Objective: Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods: Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. Results: After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The $NH_3-N$ content decreased significantly in inoculant-treated silage (p<0.05) and the $NH_3-N$ content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). Conclusion: LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, $NH_3-N$, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

Studies on the Fermentation of Rice Straw Substrates for Cultivation of Pleurotus ostreatus (느타리버섯의 볏짚배지(培地) 발효방법(醱酵方法)에 관한 연구(硏究))

  • Chung, Hwan-Chae
    • The Korean Journal of Mycology
    • /
    • v.11 no.4
    • /
    • pp.177-181
    • /
    • 1983
  • To improve cultivation technique for the stable and high yield, the outdoor fermentation of rice straw bundles, and pasteurization and fermentation of rice straw compost in tunnel were carried out. 1) Mycelial growth of P. ostreatus was becoming rapid and dense according to prolongation of fermentation periods outdoor rice straw bundles, but days untill fully mycelial growth after spawning was short. 2) As the fermentation period of rice straw bundles was 6 days (three times turning), yield of P. ostreatus was the highest as $50.5kg/3.3m^2 and increased 24% of yield than those of conventional method. 3) When it was fermented rice straw compost in tunnel for 4 days, mycelial growth of P. ostreatus was rapid and dense, and also days untill budding after spawning, was shorter, yield $67.6kg/3.3m^2$, resulted in increasing 17% of yield than those of conventional method. 4) On being sterilization and fermentation of the rice straw compost in tunnel, the production cost was decreased 22.3% in compared with conventional method.

  • PDF

Decomposition of Rice Straw and Compost in an Acid Sulfate Soil under Aerobic and Anaerobic Conditions (특이산성토양(特異酸性土壤)에 있어서 볏짚 및 퇴비(堆肥)의 분해(分解)에 관(關)한 연구(硏究))

  • Lee, Sang Kyu;Yoo, Ick Dong;Parr, James F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.4
    • /
    • pp.171-176
    • /
    • 1975
  • The rate and extent of decomposition of rice straw and compost in an acid sulfate soil amended with urea and lime and incubated under aerobic and anaerobic(flooded) conditions were investigated in the laboratory. Results are summarized as follows: 1. The rate of compost(alone) decomposition in a flooded soil was more than twice as high as all other treatments, which included rice straw+urea, rice straw+lime, rice straw (alone), and compost+lime. Lime appeared to suppress the decomposition of compost in a flooded soil but actually enhanced its decomposition under aerobic conditions. 2. Compost decomposition in both anaerobic and aerobic environments was characterized by single maximum peak rates of $CO_2$ evolution that were reached soon after the start of incubation. 3. Both urea and lime greatly increased the rate and extent of rice straw decomposition in the soil when incubated aerobically, although urea had a greater effect than did liming. Decomposition rates were characterized by the appearance of two maximum peak rates, a greater primary peak and a smaller secondary peak. 4. The percent decomposition of rice straw in soil incubated aerobically was approximately half (10.8%) that of compost(23.1%). However, percent decomposition of these substrates in soil amended with lime was essentially the same; i.e., rice straw+lime (29.4%) and compost+lime(31.6%). 5. There is a need to investigate the possible interaction between the addition of lime (pH) and supplemental nitrogen applied to acid sulfate soils and how this interaction might affect the decomposition of organic wastes and residues.

  • PDF

Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage

  • Zhao, Jie;Wang, Siran;Dong, Zhihao;Li, Junfeng;Jia, Yushan;Shao, Tao
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1038-1048
    • /
    • 2021
  • Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to in vitro analyses. Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The in vitro gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on in vitro digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05). Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best.

Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats

  • Fan, Geng-Jen;Chen, Mei-Hsing;Lee, Churng-Faung;Yu, Bi;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.999-1009
    • /
    • 2022
  • Objective: To improve the feeding value of rice straw (RS), this study evaluated the potential of rice straw fermented with Pleurotus sajor-caju (FRS) as dairy goat feed. Methods: Spent Pleurotus sajor-caju mushroom substrate was used as fungi inoculum to break the lignocellulose linkage of rice straw, which was solid-fermented at 25℃ to 30℃ for 8 weeks. The ruminal degradation of pangolagrass hay (PG), FRS, and RS were measured in situ for 96 hours in three dry Holstein cows, respectively. Effect of fungi fermented RS on milking performance was studied in feeding trials. A total of 21 Alpine goats a trial were divided into 3 groups: a control group in which PG accounted for 15% of the diet dry matter, and FRS or RS was used to replace the PG in the control group. Goats were fed twice a day under two 28-day trial in individual pens. Meanwhile, a 3×3 Latin square trial (14 days/period) was conducted to study the rumen digestion of three diets by using three fistulated dry goats. Rumen contents were collected for metabolite analyses every one to three hours on the last two days. Results: In situ study showed that fermentation could elevate the rumen degradable fraction and effective degradability of RS (p<0.05). Effective degradability of FRS dry matter was significantly increased from 29.5% of RS to 41.7%. Lactating trial results showed that dry matter intake and milk yield in the PG group and FRS group were similar and higher than those in RS group (p<0.05). The concentration of propionic acid and total volatile fatty acid in the RS group tended to be lower than those in PG group (p<0.10). There were no differences in rumen pH value and ammonia nitrogen level among the groups tested. Conclusion: Fermentation of rice straw by spent Pleurotus sajor-caju mushroom substrate could substantially enhance its feeding value to be equivalent to PG as an effective fiber source for dairy goat. The fermented rice straw is recommended to account for 15% in diet dry matter.