• Title/Summary/Keyword: rice yield and quality

Search Result 597, Processing Time 0.029 seconds

A Study on the Changes in Grain Weight, Moisture Content, Shattering Force, Milling Ratio and Apparant Physical Quality of Rice with Harvesting Time (수도의 수확적기결정을 위한 기초적 연구)

  • Yong-Woong Kwon;Jin-Chul Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 1980
  • To determine the optimum harvest time of recent rice varieties from Indica/Japonica remote crosses, leading varieties Suweon 264 and Milyang 23 were tested for the changes in dry matter weight and moisture content of grain, shattering, shelling ratio, milling ratio, and apparant physical quality during grain development at 5 day-intervals from 20 days to 55 days after heading. The results are summarized as follows: 1. Grain weight (dry matter) reached its maximum (physiological maturity) at 30 days after flowering (DAF) in Suweon 264, and at 35 days in Milyang 23, and thereafter it did not change significantly until 55 DAF. 2. Time course of decrease in grain moisture content (Y, %) during maturation (X, DAF) consisted of two linear phases, i.e. a fast and a slow period: Y=68.245-1.33X until 34DAF, and Y=23.025-0.470X until 55DAF after 34DAF in Suweon 264; Y=73.62-1.634X until 24.5DAF, and Y=33.59-0.570X until 55DAF after 24.5DAF in Milyang 23. Two varieties showed the same grain moisture content of 28% (wet basis) at physiological maturity in spite of the distinct differences in the heading date, time of physiological maturity and thereby ripening climate. 3. Force to shatter a grain ranged about 90 to 100g in Milyang 23, and about 200 to 250g in Suweon 264 and in a Japonica variety, Jinheung. The force, however, did not change significantly with harvest time from 35DAF to 50DAF. 4. The changes in the ratios of shelling, milling, broken rice and tinted rice with harvest time were insignificant during a period from 35DAF to 55DAF. However, ratios of green rice and white belly rice decreased significantly with delay in harvest time during 10 days after physiological maturity. 5. The best time of harvest for maximum yield and good quality is thought to be 10 days after physiological maturity, and grain moisture content at this time was about 20% on wet basis.

  • PDF

Estimation and Association of Genetic Diversity and Heterosis in Basmati Rice

  • Pradhan, Sharat Kumar;Singh, Sanjay;Bose, Lotan Kumar;Chandra, Ramesh;Singh, Omkar Nath
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.86-91
    • /
    • 2007
  • A representative group of 38 improved basmati lines including maintainers of sterile lines were studied for genetic diversity utilizing Mahalanobis $D^2$ statistics. A wide diversity was observed having ten clusters with high intra- and inter-cluster distance. Heterosis was estimated utilizing the cytoplasmic male sterile lines from the clusters having high intra- and inter-cluster distance. Highly heterotic hybrids were obtained from the hybridization programme. Cross combinations IR68281A/Pusa 1235-95-73-1-1, IR68281A/RP 3644-41-9-5, Pusa 3A/UPR 2268-4-1, IR 68281A/Pusa Basmati-1, IR68281A/BTCE 10-98, and IR58025A/HKR 97-401 were found to be highly heterotic for grain yield/plant with other agronomic and quality traits. Additionally, a positive association of intra-cluster distance with heterosis was observed, which could be utilized as a guideline for predicting heterosis in basmati hybrid rice breeding program. Also, a positive association between inter-cluster distance and heterosis was observed.

  • PDF

Agronomic Characteristics of A Promising Line Adaptable to Extremely Early Cultivation (벼 극조기 재배 적응 유망계통의 농업적 특성)

  • Lee, Jong-Hee;Oh, Seong-Hwan;Kim, Sang-Yeol;Cho, Jun-Hyeon;Lee, Ji-Yoon;Yeo, Un-Sang;Song, You-Chun;Choi, Kyoung-Jin;Park, Tae-Seon;Kang, Hang-Won;Lee, Hag-Dong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • Recently, peoples are greatly concerned with global temperature change because global warming can be a potential serious effect on agriculture production such as yield reduction and poor grain quality. On the other hand, it can bring some beneficial effects through twice cultivation of rice in temperate region. In order to overcome this situation, we developed extremely early-maturing rice 'Milyang255' which heading date was similar with 'Jinbuolbyeo'. Based on agronomic characteristics of 'Milyang255', it has very short stature as 65 cm of culm length and slightly lower spikelets number per panicle compared with that of 'Jinbuolbyeo'. However, the grain appearance, palatability and other items were better than those of 'Jinbuolbyeo' in panel test of cooked rice. The milled rice yield of 'Milyang255' is 3.94 MT/ha at the early transplanting. Especially, its grain filling rate was higher and faster than Jinbuolbyeo and the head rice ratio in milled rice was also higher. Thus, 'Milyang255' can efficiently reduce the growth duration of rice cultivation and also be useful material for research on twice cultivation of rice in Korea.

Effect of Densities of Echinochloa crus-galli and Cyperus serotinus in Direct-seeding Flooded Rice on Rice Yield and Quality, and Economic Threshold Level of the Weeds (벼 담수직파에서 피와 너도방동사니의 발생밀도에 따른 쌀 수량, 미질 및 경제적 허용 한계밀도 설정)

  • Kim, Sang-Kuk;Kim, Su-Yong;Won, Jong-Gun;Shin, Jong-Hee;Kim, Hak-Yoon
    • Korean Journal of Weed Science
    • /
    • v.32 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • This study was conducted to predict the rice yield loss and to determine the economic threshold levels for direct-seeding flooded rice cultivation from competition to the most serious perennial weeds, Cyperus serotinus Rottb. and Echinochloa crus-galli L. The rice yield loss model of C. serotinus and E. crus-galli were predicted as Y = 560 kg/(1+0.001883x), $r^2$=0.933, and Y = 507 kg/(1+0.001734x), $r^2$=0.867, respectively. In comparison of the competitiveness represented by parameter ${\beta}$, it was 0.001883 in C. serotinus and 0.001734 in E. crus-galli, respectively. Economic thresholds calculated using Cousens' equation were negatively related with the competitiveness of weed. The economic thresholds of C. serotinus and E. crus-galli were 15.5 and 2.3 plants per $m^2$, respectively.

Establishment of Perfect-Drainage Period for Reduction of Salt Injury and Improvement of Grain Filling Ratio in the Newly Reclaimed Land (신간척지에서 염해경감 및 등숙률 향상을 위한 완전낙수시기 구명)

  • Choi, Weon-Young;Yang, Chang-Hyu;Lee, Jang-Hee;Kim, Taek-Kyum;Jeong, Jae-Hyeok;Cho, Min-Kyu;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.177-181
    • /
    • 2011
  • This research was carried out to establish perfect-drainage time in order to stabilize rice yield and improve rice quality. Treatments of perfect-drainage were conducted 5 days interval during 25 days to 50 days after heading date in the field of Saemangeum Gyehwa, newly reclaimed land. Accumulated temperature after heading date in 2010 increased about $100^{\circ}C$ and precipitation amount decreased a little compared to normal year harvesting time. Average panicle number was 16.5 and spikelet per panicle was 88. Perfect drainage time treatment after 40~50 days was 3% higher in percent ripened grain and 0.6 g heavier in 1,000 grain weight than treatment after 25~35 days. There was no difference of rice yield between perfect drainage time treatment after 25 days and 30~35 days, but rice yield was 7~8% higher in treatment after 40~50 days than 25 days. Head rice ratio in treatment after 35 days was the highest and the sooner perfect drainage time, the lower protein content. Soil moisture negatively correlated with soil hardness and EC in this result. With this results, we proposed that the time of perfect drainage in newly reclaimed land to stable rice production is 40~50 days after heading date.

Optimum Seeding Rate in Different to Soil Salinity for Broadcasting on the Rice Flooded Paddy Surface at South-western Reclaimed Saline Land of Korea (서남부 간척지에서 벼 담수표면산파재배시 토양 염농도별 적정 파종량)

  • Back, Nam-Hyun;Choi, Weon-Young;Ko, Jong-Cheol;Park, Hong-Kyu;Nam, Jeong-Kweon;Park, Kwang-Geun;Kim, Sang-Su;Kim, Bo-Kyeong;Kim, Choung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.47-51
    • /
    • 2006
  • This study was conducted to establish the optimum seeding rate in different soil salinity level for yield stability of broadcasting on flooded paddy surface to the reclaimed saline land of south-western part at Gyehwado substation of the Honam Agricultural Research institute in $2003{\sim}2004$. Soeganbyeo was tested in the Munpo series (fine sand loam) the results obtained is as follows: As seeding rate was higher, the number of seeding stand was increased and the number of seeding stands in the low salinity field is sharply increased than those of the medium salinity field. The length of culm in medium salinity field tends to be shorter than that of the low salinity field and as seeding rate was increased, the lodging is severe. The milled rice yield was increased as up to 9 kg/10a in low and medium salinity soil. Complete rice was no significantly increased over 5 kg/10a seeding rate in low salinity field and over 7 kg/10a seeding rate in medium salinity field. Considering the yield of milled and complete rice, seeding stand and lodging, The proper seeding rate is $5{\sim}7kg/10a$ in low salinity and $7{\sim}9kg/10a$ in medium salinity for broadcasting on flooded paddy surface at the reclaimed saline land of southwestern part.

The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario (RCP 8.5 시나리오에 따른 미래 기후조건에서 벼의 품질 및 전분 동화 특성 변화)

  • Sang, Wan-Gyu;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jeong-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2018
  • The objective of this study was to analyze the impact of climate change on rice yield and quality. Experiments were conducted using SPAR(Soil-Plant-Atmosphere-Research) chambers, which was designed to create virtual future climate conditions, in the National Institute of Crop Science, Jeonju, Korea, in 2016. In the future climate conditions($+2.8^{\circ}C$ temp, 580 ppm $CO_2$) of year 2051~2060 according to RCP 8.5 scenario, elevated temperature and $CO_2$ accelerated the heading date by about five days than the present climate conditions, resulted in a high temperature environment during grain filling stage. Rice yield decreased sharply in the future climate conditions due to the high temperature induced poor ripening. And the spikelet numbers, ripening ratio, and 1000-grain weight of brown rice were significantly decreased compared to control. The rice grain quality was also decreased sharply, especially due to the increased immature grains. In the future climate conditions, expression of starch biosynthesis-related genes such as granule-bound starch synthase(GBSSI, GBSSII, SSIIa, SSIIb, SSIIIa), starch branching enzyme(BEIIb) and ADP-glucose pyrophosphorylase(AGPS1, AGPS2, AGPL2) were repressed in developing seeds, whereas starch degradation related genes such as ${\alpha}-amylase$(Amy1C, Amy3D, Amy3E) were induced. These results suggest that the reduction in yield and quality of rice in the future climate conditions is likely caused mainly by the poor grain filling by high temperature. Therefore, it is suggested to develop tolerant cultivars to high temperature during grain filling period and a new cropping system in order to ensure a high quality of rice in the future climate conditions.

Feed Value and Fermentative Quality of Haylage of Winter Cereal Crops for Forage at Different Growing Stages (사료맥류의 생육단계별 헤일리지 사료가치 및 발효품질)

  • Song, Tae Hwa;Park, Tae Il;Han, Ouk Kyu;Kim, Kee Jong;Park, Ki Hun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.419-428
    • /
    • 2012
  • This study was carried out to analyze winter cereal crops for harvest time, proper drying time and haylage quality in order to investigate the possibility of the production of good quality haylage substitute for hay. As a result, in case of productivity and feed value, dry matter yield and TDN yield was increased with late harvest and crude protein and NDF, ADF was decreased (p<0.05). To make haylage for whole crop barley, oats, triticale, whole crop wheat need more than 32 hour wilting time in the milk ripe stage, yellow ripe stage need about 8~24 hour, and wilting time did not need the full ripe stage. Rye does not suitable for making haylage because of difficulty pre-wilting time. In case of fermentative quality on haylage, pH was increased with late harvest on all winter cereal crop forage. Lactic acid content was decreased with late harvest (p<0.05), and highest in the milk ripe stage. Acetic acid was also decreased with late harvest, and butyric acid was not detected. In conclusion, to harvest sooner of winter cereal crops could be an efficient way when making haylage in terms of protein content and fermentation quality. Ray can used as fresh and silage, because difficulty for pre-wilting time in Korea. Whole crop barley, oats, triticale, wheat can be used haylage when harvested yellow ripen stage and pre-wilting time for 8~24 hours.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Screening of Rice Cultivars for Italian Ryegrass-Rice Double Cropping Systems in Paddy Fields of Southern Korea (남부지역 논의 사료작물-벼 이모작 작부체계에 적합한 벼 품종의 선발)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • To identify rice (Oryza sativa L.) cultivars suitable for Italian ryegrass (Lolium multiflorum Lam.)-rice double cropping systems, we investigated the yield and grain quality of four different midseason maturing rice cultivars ('Daebo', 'Haepum', 'Haiami', and 'Samdeog') and four midseason-to-late maturing rice cultivars ('Hyunpoom', 'Saeilmi', 'Saenuri', and 'Samkwang') in single rice cropping and Italian ryegrass-rice double cropping systems in paddy fields of Miryang, South Korea. We found that organic matter and available P2O5 content slightly decreased, whereas Na content increased, in the soil where Italian ryegrass was cultivated during winter compared to that in the soil that remained fallow during winter. The pH, electrical conductivity, organic matter, and contents of K+, Ca2+, Mg2+, and Na+ decreased, whereas the available P2O5 content slightly increased, in the soil where rice was harvested in both single and double cropping systems. However, compared to the optimum soil conditions for rice cultivation, available P2O5 and K+ content were high and Mg2+ content was low in both single and double cropping systems. At the heading stage, the culm length and leaf color slightly increased in most of the rice cultivars, whereas the panicle length and number slightly decreased, in the double cropped system. After harvesting, spikelet number and milled rice yield did not show a significant difference between single and double cropping systems. However, the ripened grain rate and weight per thousand grains increased slightly in the 'Saeilmi' and 'Samkwang' cultivars but remained either stable or slightly low in other cultivars in the double cropping system. The milled rice yield was high (> 500 kg/10a) in 'Daebo' and 'Haepum' among midseason maturing rice cultivars, and in 'Saeilmi' and 'Saenuri' among midseason-to-late maturing rice cultivars, in both single and double cropping systems. The head rice rate was high in midseason maturing rice cultivars in the double cropping systems, reaching > 70% in 'Haepum' and 'Haiami' cultivars, whereas it decreased in most midseason-to-late maturing rice cultivars (excluding 'Samkwang' cultivar), in double cropping systems. Particularly, it exceeded > 70% in the 'Saenuri' cultivar in both single and double cropping systems. The protein content in milled rice increased, whereas the amylose content either remained stable or slightly increased, in double cropping systems. The Toyo taste value decreased in all midseason-to-late maturing rice cultivars and slightly increased in the 'Daebo' and 'Haiami' cultivars among midseason maturing rice cultivars in double cropping systems. However, Toyo taste values in the 'Haepum', 'Haiami', and 'Saenuri' cultivars exceeding > 80% in both single and double cropping systems. Therefore, we recommend 'Haepum', 'Haiami', and 'Saenuri' cultivars as candidates for Italian ryegrass-rice double cropping systems due to high yield, head rice rate, and Toyo taste value.