• Title/Summary/Keyword: rice paddy field air

Search Result 49, Processing Time 0.031 seconds

Effects of Seeding Methods, Dates and Rates on Grain Yield in Direct Seeding of Rice with Transplanter (이항기를 이용한 벼 직파방법과 파종기 및 파종량이 수량에 미치는 영향)

  • An, Myung-Hoon;Kim, Kee-Sik;Han, Sae-Kee;Huh, Beom-Lyang;Kim, Kwang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.320-327
    • /
    • 1990
  • Experiments were conducted to investigate the method to raise seedling establishment rate and the optimum seeding dates and rates in direct seeding culture using transplanter under submerged field condition in Chuncheon area during 1986 to 1988. Direct seeding on submerged field using transplanting machine after sowing on seedling growing box contained with paddy or upland soil was possible. Higher rate of seedling establishment was obtained in case of sowing sprouted seed and intermittent irrigation after sowing. Seedling establishment rate was higher both in April 30 or May 10 seeding plot. Minimum daily average air and soil temperature to ensure more than 70 percent seedling establishment was 14.8$^{\circ}C$ and 16.3$^{\circ}C$ respectively. Optimum sowing date in the direct sowing was early May and optimum sowing rate was 200g per box, 6kg per l0a. In this case rice grain yield was 481kg per l0a and this is almost same yield level compared hand and machine transplanting.

  • PDF

Environmental Fate Tracking of Manure-borne NH3-N in Paddy Field Based on a Fugacity Model (Fugacity 모델에 기초한 논토양에서의 액비살포에 따른 암모니아성 질소 거동추적)

  • Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.224-233
    • /
    • 2019
  • Nitrogen components in liquid manure can reduce safety and quality of environment harmfully. To minimize the environmental risks of manure, understanding fate of manure in environment is necessary. This study aimed at investigating applicability of a simplified Level III fugacity model for simulating $NH_3-N$ component to analyze environmental fate and transport of $NH_3-N$ in liquid manure and to provide basis for improving management of N in the liquid manure system and for minimizing the environmental impacts of N. The model simulation conducted for four environmental compartments (air, water, soil, and rice plants) during rice-cropping to trace $NH_3-N$ component and provided applicability of the Level III fugacity model in studying the environmental fate of $NH_3-N$ in manure. Most of $NH_3-N$ was found in water body and in rice plants depending upon the physicochemical properties and proper removal processes. For more precise model results, the model is needed to modify with the detailed removal processes in each compartment and to collect proper and accurate information for input parameters. Further study should be about simulations of various N-typed fertilizers to compare with the liquid manure based on a modified and relatively simplified Level III fugacity model.

Distribution of Heavy Metals in the Soils of Hanam City. (경기도 하남시 토양의 중금속 함량 분포 조사)

  • Kim, Kye-Hoon;Kim, Kwon-Rae
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.345-350
    • /
    • 2000
  • The objectives of this study were to find out distribution of heavy metal contents in the soils of Hanam city and to provide base-line data towards development of an eco-city Hanam. One hundred surface soil (0-20 cm) samples were collected from rice paddy field, cultivated upland, forest, riverside and other areas. The samples were air-dried, sieved to pass through 2 mm sieves, followed by analyses for As, Cd, Cu, Pb and Zn by the standard method set by the ministry of environment. All the average heavy metal contents were close to background level and were much lower than concern level of the Soil Environment Conservation Act of Korea. However, some individual heavy metal contents were higher than the action level. Since natural environment including soil environment of Hanam city is being destroyed rapidly and the number of the sampling points allocated to Hanam city based on the soil contamination monitoring network of the ministry of environment is only 6, an in-depth soil survey for contamination of Hanam city is highly recommended.

  • PDF

Growth and Yield of Direct Seeded Rice in Different Seeding Dates (벼 건답직파재배에서 파종기 이동에 따른 생육 및 수량)

  • 김상경;이승필;이외현;이광석;최부술
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.442-448
    • /
    • 1992
  • In order to determine the critical seeding date in dry paddy field at southern plain area of Gyeongbug province, dry seeds of three different rice cultivars was sown April 25 to June 20 at 15 or 10-day intervals. The number of days from seeding to emergence decreased in late seeding date : from 32 days at April 25 to 7 days at June 10 sowing. The number of seedlings showed 121-154 plants per square meter were not much differed among the varieties and seeding dates. Culm length, panicle length and ripened grain ratio decreased in late seeding date, but number of panicles per square meter, 1,000 grain weight and spikelets number per panicle were similar among the seeding dates. The cumulative effective temperature(mean air temperature-15$^{\circ}C$) from emergence to heading was very constant having 655$\pm$9$^{\circ}C$ in Keomhobyeo, 771$\pm$9$^{\circ}C$ in Donghaebyeo and 801$\pm$3$^{\circ}C$ in Milyang 95, respectively. Grain yield of Dong Haebyeo seeded in June 20 and Milyang 95 seeded in June 10 were much lower compared with other seeding dates and increased green kernel in late seeding date of Donghaebyeo and Milyang 95.

  • PDF

Reference evapotranspiration estimates based on meteorological variables over Korean agro-climatic zones for rice field (남한지역의 논 농업기후지대에 대한 기상자료 기반의 기준 증발산량 추정)

  • Jung, Myung-Pyo;Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung;Choi, Soon-Kun;Lee, Byeong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.229-237
    • /
    • 2019
  • This study was conducted to estimate annual reference evapotranspiration (ET0) for the agro-climatic zones for rice paddy fields in South Korea between 1980 and 2015. The daily ET0 was estimated by applying the Penman-Monteith method to meteorological data from 61 weather stations provided by Korean Meteorological Administration (KMA). The average of annual ET0 from 1980 to 2015 was 1334.1±33.89 mm. The ET0 was the highest at the Southern Coastal Zone due to their higher air temperature and lower relative humidity. The ET0 had significantly increased with 2.81 mm/yr for the whole zones over 36 years. However, the change rate of it was different among agro-climatic zones. The annual ET0 highly increased in central zones and eastern coastal zones. In terms of correlation coefficient, the temporal change of the annual ET0 was closely related to variations of four meteorological factors (i.e., mean, minimum temperatures, sunshine duration, and relative humidity). The results demonstrated that whole Korean agro-climatic zones have been undergoing a significant change in the annual ET0 for the last 36 years. Understanding the spatial pattern and the long-term variation of the annual ET0 associated with global warming would be useful to improve crop and water resource managements at each agro-climatic zone of South Korea.

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Ecological Studies on the Transition of Sheath Blight of Rice in Korea (한국(韓國)에서의 벼 잎집무늬마름병 발생변동(發生變動)에 관(關)한 생태학적(生態學的) 연구(硏究))

  • Yu, Seung-hun
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.283-316
    • /
    • 1977
  • In an attempt to obtain a basic information to develop an effective integrated system of controlling sheath blight of rice in Korea, the transition of this disease, the variation of cultural characters and pathogenicity of the pathogen, environmental conditions affecting the disease outbreak and varietal resistance have been investigated. 1. Rice sheath blight which has been minor disease in the past was widely spread, especially since 1971. This disease has promptly spread all over the country and infected 65.2% of total rice growing area in 1976. Various factors are considered to be related to such transition of this disease. Above all, increace of application of nitrogenous fertilizer, early season and earlier cultivation of rice, introduction of more susceptible "Tongil" varieties etc. must be important factors influencing the outbreak of this disease. 2. Great variations in cultural characteristics-such as mycelial growth rate, color of the medium, amount of the aerial mycelium, shape and color of the sclerotia- and in the pathogenicity of isolates of the pathogen, Thanatephorus cucumeris Dank were observed. The optimum temperature for mycelial growth also varied with isolates, from $25^{\circ}C$ to $30^{\circ}C$. There were not necessarily any correlation between curtural characteristics and pathogenicity of isolates of Thanatephorus cucumens. 3. Mycelial grow th of isolates of Thanatephorus cucumens on the PDA medium were correlated with the air temperatures of the region where the isolates were collected. The isolates from the regions with high temperature grew well on PDA medium at $35^{\circ}C$ than those from the region with low temperature, on the other hand, the isolates from the regions with the low temperature grew well on the same medium at $12^{\circ}C$ than those from the regions with high temperature. 4. Pectin polygalacturonase (PG) and cellulase (Cx) were most active on the 3rd day after inoculation on the leaves of rice plant with Thanatephorus cucumeris, whereas pectin methylestrase (PE) was most active on the 4th day after inoculation. Relationship between the activities of PE of isolates and the strength of pathogenicity of isolates was obtained, but PG and cellulase activities were not correlated with pathogenicity of isolates. 5. The tolerence of sclerotia from in-vitro culture to low temperature varied with their water content, the dried cultural sclerotia were more tolerent than wet ones, Dried cultural sclerotia maintained almost 100% germinability for 45 days at $-20^{\circ}C$, whereas wet sclerotia lost viability at $-5^{\circ}C$. The germination ratio of the sclerotia after overwintering changed from 18% to 70% according to the water content of the test paddy fields and the ratio was low in wet paddy condition. 6. To investigate the host range of this fungi in and near paddy field, 17 weeds were inoculated with fungi. The lesions of sheath blight disease was obserbed on Sagittaria trifolia L., Echinochloa crusgalli P. Beauv., Monochoria vaginal is Presl, Polygonum Hydropiper L., Eclipta prostrata L., Digitaria sanguinalis Scapoli. 7. When the level of nitrogen applied was doubled over standard level, total nitrogen content in rice sheath increased, ami when silicate was applied, starch content in rice sheath decreased, inducing the rice plants more susceptible to sheath blight disease. Increased dressing of potash ferilizer reduced the incidence of sheat blight disease. 8. The percentage of infected stems in the early period increased more in the narrow hill plot than in the wide hill plot, but in the late period this tendency was inversed; the percentage of infected stems as well as severity in the wide hill plot increased more compared to the narrow hill plot, and the disease severity in the one plant per hill plot was also low. The number of stems in the wide hill plot was more than the number of stems in the narrow hill plot. This indicates that the microclimate, such as the relative humidity, in the narrow hill plot was more favorable for the development of this disease. 9. There was a high negative correlation between the disease severity of varieties to the sheath blight and the maturity of the varieties, that is, the early varieties were more susceptible than the late ones, and much-tillering varieties usually showed more infection than less tillering varieties. 10. No relationship was obtained between the percentage of infected stems in the early period and the severity after heading, whereas a distinct relationship was obtained between former and latter after Aug. 10.

  • PDF

Influence of Micrometeorological Elements on Evapotranspiration in Rice (Oryza sativa L.) Crop Canopy (포장(圃場)에서 벼 군락(群落)의 미기상(微氣象) 요소(要素)들이 증발산량(蒸發散量)에 미치는 영향(影響))

  • Kim, Jong-Wook;Kang, Byeung-Hoa;Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.231-241
    • /
    • 1992
  • To study the relationships between major micrometeorological elements and their influences on evapotranspiration(ET) in the canopy of two rice cultivars, Daecheongbyo and Samgangbyo, synoptic meteorological factors, micrometeorological elements and ET from the canopy and biomass production were observed at various growth stages in the paddy field of Suwon Weather Forcast Office in 1989. ET from the rice community was highly correlated with the following factors in order of pan evaporation>air temperature>leaf temperature>solar radiation>sunshine duration>difference in vapor pressure depicit(VPD)>water temperature. ET observed showed higher correlation with the evaporation from small pan than that from Class A pan. Varietal difference would be noted in the relationships between ET in Samgangbyo canopy and the evaporations observed from the pans, with which closer a correlation was found in Samgangbyo than in Daecheongbyo. The ratio of canopy ET to the evaporation from Class A pan was maintained over 1.0 through the growth stages with the maximum of 1.9 at the late August. The evaporation observed from Class A pan was amounted to 71.9% of that from small pan. ET was better correlated with solar radiation than with net radiation which reached about 66% of solar radiation. Maximum temperature showed higher correlation with ET than mean air temperature, and also wind speed of 1m above ground revealed positive correlation. The relative humidity, however, had no correlation with the exception of ET in rainy days. A regression model developed to estimate ET as a function of meteorological elements being described with $R^2$ of 0.607 as : $ET=-5.3594+0.7005Pan\;A+0.1926T_{mean}+0.0878_{sol}+0.025RH$.

  • PDF

The Impacts of Barley Straw Burning Having Different Moisture Contents and Harvesting Timing on Air Pollutant Emission (보릿짚의 수분함량 및 수확시기가 소각시 대기오염물질 발생에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Lee, Jae-Sang;Kim, Chun-Song;Park, Seong-Tae;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.99-103
    • /
    • 2004
  • This study was carried out to determine impacts of burning of barley straw produced from rice-barley double cropping paddy field on air quality by investigating emissions of greenhouse gases ($CO_2$, $CH_4$ and $N_2O$), air pollution gases (CO, $SO_2$, $H_2S$, $NH_3$ and NO) and particulate matters (PM 10 and PM 2.5). When the barley straw at a rate of 4.5 t/ha was burned at open status, the emitted GHGs amounts were $CO_2$ 376.8 kg/l0a, $CH_4$ 1.56 and $N_2O$ 0.06. The amount of CO emission was the largest among air pollution gases. These results showed that the range of $45{\sim}55%$ of total C in barley straw was emitted as $CO_2-C$, followed by CO-C ($6.4{\sim}5.9%$) and $CH_4-C$ ($0.5{\sim}0.7%$). As far as moisture content in barley straw is concerned, the higher moisture content that the barley straw contains, the larger amount of air pollution gases and the higher portion of PM 2.5 in PM 10 were emitted when it burned. In case of harvesting time of barley straw, emission amounts of greenhouse, air pollution gases and PM 2.5 portion in PM 10 had tendency to increase when earlier harvested barley straw was burned.