• 제목/요약/키워드: rice germplasm

Search Result 98, Processing Time 0.028 seconds

Utilization of Elite Korean Japonica Rice Varieties for Association Mapping of Heading Time, Culm Length, and Amylose and Protein Content

  • Mo, Youngjun;Jeong, Jong-Min;Kim, Bo-Kyeong;Kwon, Soon-Wook;Jeung, Ji-Ung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • Association mapping is widely used in rice and other crops to identify genes underlying important agronomic traits. Most association mapping studies use diversity panels comprising accessions with various geographical origins to exploit their wide genetic variation. While locally adapted breeding lines are rarely used in association mapping owing to limited genetic diversity, genes/alleles identified from elite germplasm are practically valuable as they can be directly utilized in breeding programs. In this study, we analyzed genetic diversity of 179 rice varieties (161 japonica and 18 Tongil-type) released in Korea from 1970 to 2006 using 192 microsatellite markers evenly distributed across the genome. The 161 japonica rice varieties were genetically very close to each other with limited diversity as they were developed mainly through elite-by-elite crosses to meet the specific local demands for high quality japonica rice in Korea. Despite the narrow genetic background, abundant phenotypic variation was observed in heading time, culm length, and amylose and protein content in the 161 japonica rice varieties. Using these varieties in association mapping, we identified six, seven, ten, and four loci significantly associated with heading time, culm length, and amylose and protein content, respectively. The sums of allelic effects of these loci showed highly significant positive correlation with the observed phenotypic values for each trait, indicating that the allelic variation at these loci can be useful when designing cross combinations and predicting progeny performance in local breeding programs.

Correlation between Methane (CH4) Emissions and Root Aerenchyma of Rice Varieties

  • Kim, Woo-Jae;Bui, Liem T.;Chun, Jae-Buhm;McClung, Anna M.;Barnaby, Jinyoung Y.
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.381-390
    • /
    • 2018
  • Percentage of aerenchyma area has been closely linked with amounts of methane emitted by rice. A diversity panel of 39 global rice varieties were examined to determine genetic variation for root transverse section (RTS), aerenchyma area, and % aerenchyma. RTS and aerenchyma area showed a strong positive correlation while there existed no significant correlation between RTS area and % aerenchyma. Five varieties previously shown to differ in methane emissions under field conditions were found to encompass the variation found in the diversity panel for RTS and aerenchyma area. These five varieties were evaluated in a greenhouse study to determine the relationship of RTS, aerenchyma area, and % aerenchyma with methane emissions. Methane emissions at physiological maturity were the highest for 'Rondo', followed by 'Jupiter', while 'Sabine', 'Francis' and 'CLXL745' emitted the least. The same varietal rank, 'Rondo' being the largest and 'CLXL745' the smallest, was observed with RTS and aerenchyma areas. RTS and aerenchyma area were significantly correlated with methane emissions, r = 0.61 and r = 0.57, respectively (P < 0.001); however, there was no relationship with % aerenchyma. Our results demonstrated that varieties with a larger root area also developed a larger aerenchyma area, which serves as a gas conduit, and as a result, methane emissions were increased. This study suggests that root transverse section area could be used as a means of selecting germplasm with reduced $CH_4$ emissions.

Candidate Gene Analysis to Rice Bacterial Leaf Blight Resistance of Korean Races of Xoo (Xanthomonas oryzae) in Rice Genetic Resources by GWAS Analysis

  • Myung Chul Lee;Yu-Mi Choi;Myoung-Jae Shin;Hyemyeong Yoon;Sukyeung Lee;Kebede Taye Desta
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.49-49
    • /
    • 2020
  • Bacterial leaf blight (BLB), caused by X. oryzae pv. oryzae(Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a total of 10,000 accessions of rice germplasm were tested to resistance degree of four Korean isolated races (K1, K2, K3 and K3a) of Xoo by bioassay and a diverse 268 accessions was selected to the genome-wide association study (GWAS) using high quality 34,724 SNPs to identify the associated with resistance loci. LOC_Os04g53160 of chromosome 4 was significantly associated with K1 race resistant. LOC_Os11g46230 and LOC_Os11g47150 of chromosome 11 were highly associated with K2 and K3 races as 23.7 and 27.4 of -log(P) value, but K3a resistant loci was weakly associated at LOC_Os03g55270 of chromosome 3. The results of the GWAS validate known gene of BLB resistant and identified novel loci of R genes that provide useful targets for further investigation to help the breeding system and identified gene and QTL provide valuable sources for further functional characterization.

  • PDF

Salinity Tolerance of Progenies between Korean Cultivars and IRRI's New Plant Type Lines in Rice

  • Lee, Seung-Yeob;Dharmawansa Senadhira
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.234-238
    • /
    • 1998
  • To select new germplasm for salinity tolerance from new plant type (NPT) breeding lines, the sixty F$_4$ lines selected from the crosses between Korean cultivars and IRRI's NPT lines were evaluated for salinity tolerance at the seedling stage with salinized culture solution (EC=12 dS/m) in the controlled conditions. Two NTP lines derived from a cross between 'Ilmibyeo' and 'IR66152-AC5-1', 'HR15258-7-1' and 'HR15258-27-1', were found to have good tolerance. The salinity tolerance of the lines was compared to their parents and the sensitive ('IR29') and tolerant ('Pokkali') checks in three salinity levels, no salinity (control) and an EC of 12 and 16 dS/m. Visual salinity score, shoot Na+ and Na-K ratio in two NPT lines was significantly low compared with the parents and IR29. Indicating that salinity tolerance of the lines might be derived from a transgressive segregation. The relative water content of the lines was higher than Pokkali, and the dry weight of shoot and root was proportionally decreased to salinity score and salinizing concentration. The visual salinity scores were significantly correlated with shoot Na concentration, Na-K ratio, relative water content, and reduction of dry weight (P<0.01). Their tolerance was attributed to root and shoot characteristics that led to high shoot water content, thus diluting the toxic effect of salts.

  • PDF

Genetic Diversity and Characterization of DPE1 Gene in Rice Germplasm

  • Aueangporn Somsri;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.220-220
    • /
    • 2022
  • Disproportionating Enzyme 1 (DPE1) is an a-1,4-D-glucanotransferase that cleavages the a-1,4-glucosidic bonds and transfers glucosyl groups. In rice endosperm, it participates in starch synthesis by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Here, we investigated the haplotype variations and evolutionary indices (e.g., genetic diversity and population structure) for the DPE1 gene in 374 rice accessions representing seven subgroups (wild, indica, temperate japonica, tropical japonica, aus, aromatic, and admixture). Variant calling analysis of DPE1 coding regions leads to the identification of six functional haplotypes representing/occupying 8 nonsynonymous SNPs. Nucleotide diversity analysis revealed the highest pi-value in wild group (0.0556) compared to other cultivated groups, of which temperate japonica showed the most reduction of genetic diversity value (0.003). A significant positive Tajima's D value (1.6330) of admixture highlights sudden population contraction under balancing selection, while temperate japonica with the lowest Tajima's D value (-1.3523) showed a selection signature of DPE1 domestication which might be the cause of excess of rare alleles. Moreover, these two subpopulations exhibits a greater differentiation (FST=0.0148), indicating a higher genetic diversity. Our findings on functional DPE1 haplotypes will be useful in future breeding programs, and the evolutionary indices can also be applicable in functional studies of the DPE1 gene.

  • PDF

Resistance of Oryza sativa and Oryza glaberrima Genotypes to RBe24 Isolate of Rice Yellow Mottle Virus in Benin and Effects of Silicon on Host Response

  • Anato, Vital Kouessi Sixte;Agnoun, Yves;Houndjo, Joel;Oludare, Aderonke;Agbangla, Clement;Akoroda, Malachy;Adetimirin, Victor O.
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.375-388
    • /
    • 2021
  • Rice yellow mottle virus (RYMV) is the most harmful virus that affects irrigated and lowland rice in Africa. The RBe24 isolate of the virus is the most pathogenic strain in Benin. A total of 79 genotypes including susceptible IR64 (Oryza sativa) and the resistant TOG5681 (O. glaberrima) as checks were screened for their reactions to RBe24 isolate of RYMV and the effects of silicon on the response of host plants to the virus investigated. The experiment was a three-factor factorial consisting of genotypes, inoculation level (inoculated vs. non-inoculated), and silicon dose (0, 5, and 10 g/plant) applied as CaSiO3 with two replications and carried out twice in the screen house. Significant differences were observed among the rice genotypes. Fifteen highly resistant and eight resistant genotypes were identified, and these were mainly O. glaberrima. Silicon application did not affect disease incidence and severity at 21 and 42 days after inoculation (DAI); it, however, significantly increased plant height of inoculated (3.6% for 5 g CaSiO3/plant and 6.3% for 10 g CaSiO3/plant) and non-inoculated (1.9% for 5 g CaSiO3/plant and 4.9% for 10 g CaSiO3/plant) plants at 42 DAI, with a reduction in the number of tillers (12.3% for both 5 and 10 g CaSiO3/plant) and leaves (26.8% for 5 g CaSiO3/plant and 28% for 10 g CaSiO3/plant) under both inoculation treatments. Our results confirm O. glaberrima germplasm as an important source of resistance to RYMV, and critical in developing a comprehensive strategy for the control of RYMV in West Africa.

Variance of Agronomical Quantitative Traits in Mung Bean (Vigna radiata (L.) R. Wilczek var. radiata) Germplasm

  • Hyemyeong Yoon;Yu-Mi Choi;Kebede Taye Desta;Sukyeung Lee;Myong-Jae Shin;Xiaohan Wang;Joungyun Yi;Young-ah Jeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.31-31
    • /
    • 2023
  • Mung bean(Vigna radiata (L.) R. Wilczek var. radiata) is a legume that originated in India. It is the third most cultivated legume in Korea after soybean and adzuki bean. Recently, the use of mung bean seeds and sprouts in trendy foods such as rice noodles and Chinese-style stir-fry is expanding thereby increasing its demand. Subsequently, improvement of mung bean varieties is also being actively conducted. In this study, the important agricultural characteristics of 324 mung bean germplasm were recorded and statistically investigated. Seeds of the mung bean germplasm were cultivated at an experimental field located in the National Agrobiodiversity Center (Jeonju, Korea) and 10 quantitative agricultural traits were investigated. Basic statistics, correlation analysis, and principal component analysis were then performed. The results showed significant variations of the quantitative traits among the germplasms (p < 0.05). The days to flowering, maturity, and growth were in the ranges of 31~80, 22~72, and 57~110 days with means of 45, 47, and 92 days, respectively. The highest frequency (f = 192) was for lodging score with 11~50%, while simultaneous maturity (f = 182) was below 50%. Other quantitative traits related to yield including the number of seeds per pod (CV = 10.9%), number of pods per plant (CV = 41.2%), and one-hundred seeds weight (CV = 36.6%) also showed significant variations. Correlation analysis showed positive correlations between the days to maturity and one-hundred seeds weight (r = 0.41) and the days to growth and simultaneous maturity (r = 0.39). In contrast, one-hundred seeds weight was negatively correlated to the number of pods per plant (r = -0.41) and the days to flowering (r = -0.29). Similarly, the days to growth and the number of pods per plant had a negative association with each other (r = -0.29). The principal component analysis revealed the number of days to maturity as the most influential variable along the first principal component (23.7%). In general, this study revealed wide variations in quantitative traits among the studied mung bean germplasm, which could provide several options for cultivar development.

  • PDF

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF

Genetic Analysis of Growth Response to Cold Water Irrigation in Rice

  • Han, Long-Zhi;Koh, Hee-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.26-31
    • /
    • 2000
  • This study was carried out to obtain the basic information for breeding cold-tolerant rice varieties with high yield-productivity through wide crosses between indica and japonica rice. Genetic analysis was conducted using 55 F$_1$s obtained from half-diallel crosses among eleven cultivars of various origin including indica and japonica rice. Screening for cold tolerance was done with cold-water irrigation after transplanting until ripening stage. Both general combining ability (GCA) and specific combining ability (SCA) effects were highly significant in all characters associated with dry matter accumulation at 30 and 50days after cold-water irrigation (DAC). The variance of GCA was much larger than that of SCA in plant height, shoot dry weight per plant (DWP), crop growth rate (CGR) and cold-water response index (CRI) of these characters except CRI of shoot dry weight per plant. The DWP, CGR and CRI of these characters of Gaochan 102, Tong88-7 and TR22183 were markedly higher than those of the others. GCA effects of these varieties on DWP, CGR and their CRI were also higher than those of the others, indicating that they are useful as promising parents for breeding cold-tolerant varieties. Analysis of genetic parameters for 11$\times$11 half-diallel F$_1$s revealed that inter-locus gene interaction were concerned in the expression of plant height at 50 DAC, CRI of DWP at 50 DAC, and CRI of CGR, and that intra-locus gene interaction for plant height and the other characters were partial dominance and over-dominance, respectively. Narrow-sense heritability (h$^2$$_{N}$) was the highest in plant height as 0.729, and the lowest in CRI of DWP at 30 DAC as 0.048, suggesting that selection for cold tolerance will be quite effective in case that the selection criterion is the performance itself.f.

  • PDF

New Sources of Resistance and Identification of DNA Marker Loci for Sheath Blight Disease Caused by Rhizoctonia solani Kuhn, in Rice

  • Pachai, Poonguzhali;Ashish, Chauhan;Abinash, Kar;Shivaji, Lavale;Spurthi N., Nayak;S.K., Prashanthi
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.572-582
    • /
    • 2022
  • Sheath blight disease caused by the necrotrophic, soilborne pathogen Rhizoctonia solani Kuhn, is the global threat to rice production. Lack of reliable stable resistance sources in rice germplasm pool for sheath blight has made resistance breeding a very difficult task. In the current study, 101 rice landraces were screened against R. solani under artificial epiphytotics and identified six moderately resistant landraces, Jigguvaratiga, Honasu, Jeer Sali, Jeeraga-2, BiliKagga, and Medini Sannabatta with relative lesion height (RLH) range of 21-30%. Landrace Jigguvaratiga with consistent and better level of resistance (21% RLH) than resistant check Tetep (RLH 28%) was used to develop mapping population. DNA markers associated with ShB resistance were identified in F2 mapping population developed from Jigguvaratiga × BPT5204 (susceptible variety) using bulk segregant analysis. Among 56 parental polymorphic markers, RM5556, RM6208, and RM7 were polymorphic between the bulks. Single marker analysis indicated the significant association of ShB with RM5556 and RM6208 with phenotypic variance (R2) of 28.29 and 20.06%, respectively. Co-segregation analysis confirmed the strong association of RM5556 and RM6208 located on chromosome 8 for ShB trait. This is the first report on association of RM6208 marker for ShB resistance. In silico analysis revealed that RM6208 loci resides the stearoyl ACP desaturases protein, which is involved in defense mechanism against plant pathogens. RM5556 loci resides a protein, with unknown function. The putative candidate genes or quantitative trait locus harbouring at the marker interval of RM5556 and RM6208 can be further used to develop ShB resistant varieties using molecular breeding approaches.