• Title/Summary/Keyword: rice bacterial blight

Search Result 229, Processing Time 0.024 seconds

'Saemimyeon', a Tongil-Type Medium-Late Maturing Rice Variety with High Amylose ContentUsed for Rice Noodle Preparation (쌀면전용 고아밀로스 중생 통일형 벼 '새미면')

  • Cho, Jun-Hyeon;Lee, Jong-Hee;Park, No-Bong;Son, Young-Bo;Oh, Sung-Hwan;Han, Sang-Ik;Song, You-Chun;Seo, Woo-Duck;Park, Dong-Soo;Nam, Min-Hee;Lee, Ji-Yoon
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.522-528
    • /
    • 2018
  • Saemimyeon, a Tongil type, medium-late maturing rice variety, is especially used for preparing rice noodles. Its high amylose content was developed to fit market demands and to be affordable for rice processing industries. One of the high yielding lines, Milyang181 (Hanareum), was used in the final three-way cross of $IR50^*2$/YR18241-B-B-115-1-1 for yield improvement and cultivation stabilization, including disease resistance. YR24235-10-1-3, a high yielding and compact plant type, was selected and named Milyang278 after yield test at NICS (RDA, Miryang) in 2010. It was subjected to regional yield test at six sites in the middle and southern plain areas of South Korea. Saemimyeon heading occurs on August 12 and is a mid-late maturing cultivar, with resistance to leaf blast, rice stripe virus, and bacterial blight (K1-K3a), but it is susceptible to major diseases and insect pest infestation. Saemimyeon showed a high amylose content of 26.7%, with a relatively low KOH digestion value of 3.5, which are key factors in rice noodles and pasta processing. In the local adaptability tests, the yield of Saemimyeon was 7.08 MT/ha-an increase of approximately 106% compared to that of Dasan. Thus, Saemimyeon is suitable for cultivation in the southern and middle plain areas of South Korea.

Review of Disease Incidence of Major Crops in 2003 (2003년 농작물 병해 발생개황)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The year of 2003 was characterized as a cool humid year. Low temperature and frequent rains were continued during March to July, resulting in 1.6 times higher rainfalls and 32% less sunshine period compared to the average yean Due to 2003's climatic condition, rice blast, and bacterial leaf blight occurred severely. Higher rainfalls caused severe epidemic of phytophthora disease and, in case of red-pepper, 55% of cultivation acreage was devastated by the disease over the country. Besides, crop diseases which become severe under cool-humid conditions, such as gray mold, sclerotinia rot, downy mildew, increased significantly compared to the previous year. In fruit trees, brown spot of apple, and pear scab occurred severely causing much yield loss.

Metabolomics-Based Chemotaxonomic Classification of Streptomyces spp. and Its Correlation with Antibacterial Activity

  • Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Kim, Jeong-Gu;Suh, Joo-Won;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1265-1274
    • /
    • 2015
  • Secondary metabolite-based chemotaxonomic classification of Streptomyces (8 species, 14 strains) was performed using ultraperformance liquid chromatography-quadrupole-time-offlight-mass spectrometry with multivariate statistical analysis. Most strains were generally well separated by grouping under each species. In particular, S. rimosus was discriminated from the remaining sevens pecies (S. coelicolor, S. griseus, S. indigoferus, S. peucetius, S. rubrolavendulae, S. scabiei, and S. virginiae) in partial least squares discriminant analysis, and oxytetracycline and rimocidin were identified as S. rimosus-specific metabolites. S. rimosus also showed high antibacterial activity against Xanthomonas oryzae pv. oryzae, the pathogen responsible for rice bacterial blight. This study demonstrated that metabolite-based chemotaxonomic classification is an effective tool for distinguishing Streptomyces spp. and for determining their species-specific metabolites.

A New Rice Cultivar, "Onnuri" with A Medium-Late Maturity, High Yielding, High Grain Quality and Multiple Disease Resistance (벼 중만생 다수 고품질 복합내병성 신품종 "온누리")

  • Kim, Ki Young;Shin, Mun Sik;Ko, Jae Kwon;Kim, Bo Kyeong;Ha, Ki Yong;Nam, Jeong Kwon;Ko, Jong Cheol;Baek, Man Gee;Kim, Young Doo;Choung, Jin Il;Noh, Gwang Il;Kim, Woo Jae;Park, Hyun Su;Kwang, Huyn Jung;Shin, Seo Ho;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.324-327
    • /
    • 2008
  • 'Onnuri' is a japonica rice cultivar developed from the cross between 'Milyang 165' and HR14732-B-67-2-3 at Honam Agricultural Research Institute (HARI), NICS, RDA, in 2005. This cultivar has a short grain shape and about 121 days growth duration from transplanting to harvesting in Korean climate condition. In reaction to biotic and abiotic stresses, it shows resistance to blast, bacterial blight pathogen from $K_1$ to $K_3$ and stripe virus, but susceptible to other major diseases and insect pests. The milled kernel of 'Onnuri' is translucent with non-glutinous endosperm. It has about 18.6% of amylose content and better palatability of cooked rice compared with 'Chucheongbyeo' cultivated in Kyunggi province. The milled rice yield of 'Onnuri' is about 5.94 MT/ha under the standard fertilizer level of the ordinary transplanting cultivation. 'Onnuri' would be adaptable to southern plain of Cheonan, middle-northern plain, and southern mid-mountainous of Korea.

Identification, Fermentation, and Bioactivity Against Xanthomonas oryzae of Antimicrobial Metabolites Isolated from Phomopsis longicolla S1B4

  • Lim, Chae-Sung;Kim, Ji-Young;Choi, Jung-Nam;Ponnusamy, Kannan;Jeon, Yul-Taek;Kim, Soo-Un;Kim, Jeong-Gu;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.494-500
    • /
    • 2010
  • Bacterial blight, an important and potentially destructive bacterial disease in rice, is caused by Xanthomonas oryzae. Recently, this organism has developed resistance to available antibiotics, prompting scientists to find a suitable alternative. This study focused on secondary metabolites of Phomopsis longicolla to target X. oryzae. Five bioactive compounds were isolated by activity-guided fractionation from ethyl acetate extracts of mycelia and were identified by LC/MS and NMR spectroscopy as dicerandrol A, dicerandrol B, dicerandrol C, deacetylphomoxanthone B, and fusaristatin A. This is the first time fusaristatin A has been isolated from Phomopsis sp. Deacetylphomoxanthone B showed a higher antibacterial effect against X. oryzae KACC 10331 than the positive control (2,4-diacetyphloroglucinol). Dicerandrol A also showed high antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and yeast (Candida albicans). In addition, high production yields of these compounds were obtained at the stationary and death phases.

Metabolic Changes of Phomopsis longicolla Fermentation and Its Effect on Antimicrobial Activity Against Xanthomonas oryzae

  • Choi, Jung Nam;Kim, Jiyoung;Ponnusamy, Kannan;Lim, Chaesung;Kim, Jeong Gu;Muthaiya, Maria John;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • Bacterial blight, an important and potentially destructive bacterial disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo), has recently developed resistance to the available antibiotics. In this study, mass spectrometry (MS)-based metabolite profiling and multivariate analysis were employed to investigate the correlation between timedependent metabolite changes and antimicrobial activities against Xoo over the course of Phomopsis longicolla S1B4 fermentation. Metabolites were clearly differentiated based on fermentation time into phase 1 (days 4-8) and phase 2 (days 10-20) in the principal component analysis (PCA) plot. The multivariate statistical analysis showed that the metabolites contributing significantly for phases 1 and 2 were deacetylphomoxanthone B, monodeacetylphomoxanthone B, fusaristatin A, and dicerandrols A, B, and C as identified by liquid chromatography-mass spectrometry (LC-MS), and dimethylglycine, isobutyric acid, pyruvic acid, ribofuranose, galactofuranose, fructose, arabinose, hexitol, myristic acid, and propylstearic acid were identified by gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling. The most significantly different secondary metabolites, especially deacetylphomoxanthone B, monodeacetylphomoxanthone B, and dicerandrol A, B and C, were positively correlated with antibacterial activity against Xoo during fermentation.

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Jinbo' (중생 고품질 내도복 내병성 벼 품종 '진보')

  • Kim, Jeong-Il;Park, No-Bong;Lee, Ji-Yoon;Park, Dong-Soo;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gi-Hwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.165-171
    • /
    • 2011
  • A new rice variety 'Jinbo' is a japonica rice (Oryza sativa L.) with good eating quality, lodging tolerance, and resistance to rice stripe virus (RSV) and bacterial blight disease (BB). It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2009. This variety was derived from a cross between 'Yeongdeog26' with good grain quality and wind tolerance and 'Koshihikari' with good eating quality in 1998 summer season. A promising line, YR21324-56-1-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog45' in 2005. After the local adaptability test was carried out at nine locations from 2006 to 2008, 'Yeongdeog45' was released as the name of 'Jinbo' in 2009. 'Jinbo' has short culm length as 74 cm and medium maturating growth duration. This variety is resistant to $K_1$, $K_2$, and $K_3$ races of bacterial blight and stripe virus and moderately resistant to leaf blast disease with durable resistance, and also it has tolerance to unfavorable environments such as cold and dried wind. 'Jinbo' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Jinbo' in milled rice is about 5.65 MT/ha at ordinary fertilizer level in local adaptability test. This cultivar would be adaptable to middle plain, mid-west costal area, east-south coastal area, and south mid-mountainous area.

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Haeoreumi' (중생 고품질 내도복 내병성 벼 품종 '해오르미')

  • Kim, Jeong-Il;Park, No-Bong;Park, Dong-Soo;Lee, Ji-Yoon;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gihwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.638-644
    • /
    • 2010
  • A new rice variety 'Haeoreumi' is a japonica rice (Oryza sativa L.) with lodging tolerance, resistance to rice stripe virus (RSV) and bacterial leaf blight (BLB), and high grain quality. It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2008. This variety was derived from a cross between 'Milyang165' with good grain quality and lodging resistance, and 'Haepyeongbyeo' with wind tolerance in winter season of 2000/2001. A promising line, YR22375-B-B-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog46' in 2005. 'Yeongdeog46' was released as the name of 'Haeoreumi' in 2008 after the local adaptability test that was carried out at nine locations from 2006 to 2008. 'Haeoreumi' has 74 cm short culm length as and medium maturating growth duration. This variety showed resistance to $K_1,\;K_2$, and $K_3$ races of bacterial blight, and stripe virus and moderate resistant to leaf blast disease with durable resistance, and also has tolerance to unfavorable environment such as cold, dry and cold salty wind. 'Haeoreumi' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Haeoreumi' in milled rice is about 5.58MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Middle plain, mid-west costal area, and east-south coastal area.

Race Classification of the Bacterial Blight Pathogen, Xanthomonas oryzae pv. oryzae, by Rice NILs with Single Resistance Genes (벼 흰잎마름병 저항성 유전자를 갖고 있는 준동질 계통을 이용한 벼 흰잎마름병균의 레이스 분류)

  • Choi, Jae-Eul;Kim, Bo-Ra;Han, Jin-Soo;Kang, Hee-Kyoung;Hur, Seung-Gi
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.165-170
    • /
    • 2008
  • One hundred and three isolates of Xanthomonas oryzae pv. oryzae in Korea were evaluated for their virulence on four near-isogenic lines (NILs) containing a single resistance gene, and Korean differential varieties. The resistant gene backgrounds of Cheongcheongbyeo, Pungsanbyeo, Hangangchalbyeo, Milyang42 were not completely understood and they were not suited for the classification of X. oryzae pv. oryzae. Four NILs, IRBB101, IRBB103, IRBB105, and IRBB107 were difference for characterizing races of X. oryzae pv. oryzae because they have a single resistance gene. These NILs may be useful differential set in examining pathogenic races of X. oryzae pv. oryzae in Korea. Based on the virulence of 103 isolates to new differential varieties, they were classified into 3 races.

Development of a Method for High throughput Screening of Antagonistic Substances against Rice Pathogens using Rice Leaf Explants (벼의 생엽절편을 이용한 병원균 억제물질의 대량 스크리닝 방법 개발)

  • Park, Sait-Byul;Lee, Choong-Hwan;Kim, Tae-Jong;Kang, Lin-Woo;Lee, Byoung-Moo;Kim, Jeong-Gu
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.39-42
    • /
    • 2012
  • A new method for the high throughput screening of antagonistic substances against rice pathogens using rice leaf explants was developed. This method can be used to confirm the activities of any compound or mixture suppressing rice bacterial blight (BB) before field tests. Xanthomonas oryzae pv. oryzae (Xoo) culture medium was distributed in 96 well plates with equally sized explants and the active compounds were added to the wells. The strength suppressing BB was converted into an area percent of the lesion on the rice explants. The explants under BB suppressing activity remained uninfected maintaining their actual green color, while infected explants exhibited pale yellow-colored lesions. Based on the results, this method seems to be faster and easier, dose-dependent, and can be performed all-at-once with a small amount of unspecified compounds. This method also has the potential to be applied to inspection activities for the suppression of other waterborne crop diseases.