• Title/Summary/Keyword: ribulose-I

Search Result 18, Processing Time 0.027 seconds

Proteome Profiling Unfurl Differential Expressed Proteins from Various Explants in Platycodon Grandiflorum

  • Kim, Hye-Rim;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag-Hyun;Cho, Kab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}$ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.

Interaction Study of Soybean mosaic virus Proteins with Soybean Proteins using the Yeast-Two Hybrid System

  • Seo, Jang-Kyun;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Lee, Su-Heon;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • Interactions between viral proteins and host proteins are essential for virus replication. Especially, translation of viral genes completely depends on the host machinery. In potyviruses, interactions of genome-linked viral protein (VPg) with host translation factors including eIF4E, eIF(iso)4E, and poly(A)-binding protein (PABP) has previously been characterized. In this study, we investigated interactions between Soybean mosaic virus (SMV) viral proteins and host translation factors by yeast two-hybrid system. SMV VPg interacted with eIF4E, eIF(iso)4E, and PABP in yeast two-hybrid system, while SMV helper component proteinase (HC-pro) interacted with neither of those proteins. The interaction between SMV NIb and PABP was also detected. These results are consistent with those reported previously in other potyviruses. Interestingly, we found reproducible and specific interactions between SMV coat protein (CP) and PABP. Deletion analysis showed that the region of CP comprising amino acids 116 to 206 and the region of PABP comprising amino acids 520 to 580 are involved in CP/PABP interactions. Soybean library screening with SMV NIb by yeast two-hybrid assay also identified several soybean proteins including chlorophyll a/b binding preprotein, photo-system I-N subunit, ribulose 1,5-biphosphate carboxylase, ST-LSI protein, translation initiation factor 1, TIR-NBS type R protein, RNA binding protein, ubiquitin, and LRR protein kinase. Altogether, these results suggest that potyviral replicase may comprise a multi-protein complex with PABP, CP, and other host factors.

Rice Proteomics: A Functional Analysis of the Rice Genome and Applications (프로테옴 해석에 의한 벼 게놈 기능해석과 응용)

  • Woo, Sun-Hee;Kim, Hong-Sig;Song, Berm-Heun;Lee, Chul-Won;Park, Young-Mok;Jong, Seung-Keun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.

Changes of RuBisCO Content and Protease Activity during the Life Span of Tobacco Leaf (담배잎의 일생에 있어서 RuBisCO 함량과 Protease활성의 변동)

  • 이학수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 1993
  • Changes in the amount of ribulose 1, 5-bisphosphate carboxylase/oygenase(=RuBisCO) protein, namely fraction I protein, and the protease activity were determined in the 10th leaf of tobacco(Nicotiana tabacum, var. Ky-57) from 10 days after emergence through senescence at 5 days interval. The amount of RuBisCO per deveined leaf rapidly increased during the early growing season, reached a maximal quantity at the around 20 days after leaf emergence, when the leaf has gone through its most rapid expansion, and began gradually to decrease till 30 days after leaf emergence, thereafter significantly declined to 45 days that the leaf has been dried up partly. The pattern of the ratio of RuBisCO protein to soluble protein in quantity changed similar to that of RuBisCO contents in a leaf, that was 43%, 60%, and 21% at the around 10 days, 20 days, and 45 days, respectively. And RuBisCO contents was linearly correlated with the concentration of chlorophyll(r=0.98) throughout the life span of the leaf. So, it was assumed that the leaf color can be a useful indicator for judging whether RuBisCO contents higher or not in tobacco leaves without homogenization. On the other hand, the protease activities for degradation of casein were assayed at pH 5.5. 7.0. and 8.5 with crude extracts desalted on Sephadex G-25. The highest caseolytic activity was found at pH 5.5 throughout the life sawn of the leaf. Also, the activity at 5.5 became gradually to increase from 30 days after leaf emergence, when RuBisCO protein had became to disappear and remarkably increased in the last stage of senescence, although nitrogen contents of the leaf had reached low levels. The caseolytic activity at pH 5.5 was in negative correlation with RuBisCO contents throughout the life span of the leaf, but not in lineality between them. In other words, the caseolytic activity increased in a rapid exponential manner when RuBisCO contents had reached some low levels. These results showed that the leaf age, namely harvesting time, is a very important factor for the production of the tobacco leaf containing higher RuBisCO protein. It was concluded that the practical harvesting time is between 20 days and 30 days after the leaf emergence from the present results.

  • PDF

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.

Application for Identification of Food Raw Materials by PCR using Universal Primer (일반 프라이머를 이용한 PCR의 식품원료 진위 판별에 적용)

  • Park, Yong-Chjun;Jin, Sang-Ook;Lim, Ji-Young;Kim, Kyu-Heon;Lee, Jae-Hwang;Cho, Tae-Yong;Lee, Hwa-Jung;Han, Sang-Bae;Lee, Sang-Jae;Lee, Kwang-Ho;Yoon, Hae-Seong
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.317-324
    • /
    • 2012
  • In order to determine an authenticity of food ingredient, we used DNA barcode method by universal primers. For identification of animal food ingredients, LCO1490/HCO2198 and VF2/FISH R2 designed for amplifying cytochrome c oxidase subunit1 (CO1) region and L14724/H15915 for cytochrome b (cyt b) region on mitochondrial DNA were used. Livestock (cow, pig, goat, sheep, a horse and deer) was amplified by LCO1490/HCO 2198, VF2/FISH R2 and L14724/H15915 primers. Poultry (chicken, duck, turkey and ostrich) was amplified by LCO1490/HCO 2198 and VF2/FISH R2 primers. But, Fishes (walleye pollack, herring, codfish, blue codfish, trout, tuna and rockfish) were only amplified by VF2/FISH R2 primers. For plant food ingredients, 3 types of primers (trnH/psbA, rpoB 1F/4R and rbcL 1F/724R) have been used an intergenic spacer, a RNA polymerase beta subunit and a ribulose bisphosphate carboxylase region on plastid, respectively. Garlic, onion, radish, green tea and spinach were amplified by trnH/psbA, rpoB 1F/4R and rbcL 1F/724R. The PCR product sizes were same by rpoB 1F/4R and rbcL 1F/724R but, the PCR product size using trnH/psbA primer was different with others for plants each. We established PCR condition and universal primer selection for 17 item's raw materials for foods and determine base sequences aim to PCR products in this study. This study can apply to determine an authenticity of foods through making an comparison between databases and base sequences in gene bank. Therefore, DNA barcode method using universal primers can be a useful for species identification techniques not only raw materials but also processed foods that are difficult to analyze by chemical analysis.