• 제목/요약/키워드: ribosomal protein

검색결과 250건 처리시간 0.033초

Cloning and Characterization of an Endoglucanase Gene from Actinomyces sp. Korean Native Goat 40

  • Kim, Sung Chan;Kang, Seung Ha;Choi, Eun Young;Hong, Yeon Hee;Bok, Jin Duck;Kim, Jae Yeong;Lee, Sang Suk;Choi, Yun Jaie;Choi, In Soon;Cho, Kwang Keun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.126-133
    • /
    • 2016
  • A gene from Actinomyces sp. Korean native goat (KNG) 40 that encodes an endo-${\beta}$-1,4-glucanase, EG1, was cloned and expressed in Escherichia coli (E. coli) $DH5{\alpha}$. Recombinant plasmid DNA from a positive clone with a 3.2 kb insert hydrolyzing carboxyl methyl-cellulose (CMC) was designated as pDS3. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The ORF encodes a polypeptide of 684 amino acids. The recombinant EG1 produced in E. coli $DH5{\alpha}$ harboring pDS3 was purified in one step using affinity chromatography on crystalline cellulose and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/zymogram analysis of the purified enzyme revealed two protein bands of 57.1 and 54.1 kDa. The amino terminal sequences of these two bands matched those of the deduced ones, starting from residue 166 and 208, respectively. Putative signal sequences, a Shine.Dalgarno-type ribosomal binding site, and promoter sequences related to the consensus sequences were deduced. EG1 has a typical tripartite structure of cellulase, a catalytic domain, a serine-rich linker region, and a cellulose-binding domain. The optimal temperature for the activity of the purified enzyme was $55^{\circ}C$, but it retained over 90% of maximum activity in a broad temperature range ($40^{\circ}C$ to $60^{\circ}C$). The optimal pH for the enzyme activity was 6.0. Kinetic parameters, $K_m$ and $V_{max}$ of rEG1 were 0.39% CMC and 143 U/mg, respectively.

Construction of High Sensitive Detection System for Endocrine Disruptors with Yeast n-Alkane-assimilating Yarrowia lipolytica

  • Cho, Eun-Min;Lee, Haeng-Seog;Eom, Chi-Yong;Ohta, Akinori
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1563-1570
    • /
    • 2010
  • To construct a highly sensitive detection system for endocrine disruptors (EDs), we have compared the activity of promoters with the n-alkane-inducible cytochrome P450 gene (ALK1), isocitrate lyase gene (ICL1), ribosomal protein S7 gene (RPS7), and the translation elongation factor-1${\alpha}$ gene (TEF1) for the heterologous gene in Yarrowia lipolytica. The promoters were introduced into the upstream of the lacZ or hERa reporter genes, respectively, and the activity was evaluated by ${\beta}$-galactosidase assay for lacZ and Western blot analysis for hER${\alpha}$. The expression analysis revealed that the ALK1 and ICL1 promoters were induced by n-decane and by EtOH, respectively. The constitutive promoter of RPS7 and TEF1 showed mostly a high level of expression in the presence of glucose and glycerol, respectively. In particular, the TEF1 promoter showed the highest ${\beta}$-galactosidase activity and a significant signal by Western blotting with the anti-estrogen receptor, compared with the other promoters. Moreover, the detection system was constructed with promoters linked to the upstream of the expression vector for the hER${\alpha}$ gene transformed into the Y. lipolytica with a chromosome-integrated lacZ reporter gene under the control of estrogen response elements (EREs). It was indicated that a combination of pTEF1p-hER${\alpha}$ and CXAU1-2XERE was the most effective system for the $E_2$-dependent induction of the ${\beta}$-galactosidase activity. This system showed the highest ${\beta}$-galactosidase activity at $10^{-6}\;M\;E_2$, and the activity could be detected at even the concentration of $10^{-10}\;M\;E_2$. As a result, we have constructed a strongly sensitive detection system with Y. lipolitica to evaluate recognized/suspected ED chemicals, such as natural/synthetic hormones, pesticides, and commercial chemicals. The results demonstrate the utility, sensitivity, and reproducibility of the system for identifying and characterizing environmental estrogens.

Mode of Action of Streptomycin Resistance in the Citrus Canker Pathogen (Xanthomonas smithii subsp. citri) in Jeju Island

  • Hyun, Jae-Wook;Kim, Hyo-Jung;Yi, Pyoung-Ho;Hwang, Rok-Yeon;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.207-211
    • /
    • 2012
  • It has been known that streptomycin resistance in bacteria can occur as a results of chromosomal mutation or through gene acquisition or both. Chromosomal mutations for resistances are point mutations in the rpsL gene, which alter ribosomal protein S12. Acquired resistance has occurred when an $Sm^R$ plasmid carrying transposon Tn5393 with tandem strA-strB gene is transferred by conjugation. A total of 686 isolates of Xanthomonas smithii subsp. citri causal agent of citrus canker disease were collected from 26 citrus orchards in Jeju Island in 2003 and 2004 seasons. Forty-nine of 111 isolates from streptomycin non-sprayed orchards in 2003 season were resistant to streptomycin. Of 107 isolates from orchards sprayed one time with streptomycin, 58 isolates were resistant, and 166 of 221 isolates from orchards sprayed two times with streptomycin were resistant. In 12 orchards sprayed three or more times with streptomycin, 219 of 247 isolates were resistant to streptomycin. Twenty-five isolates of X. smithii subsp. citri were surveyed to identify the mechanisms of streptomycin resistance in this study. Twenty-one of these 25 isolates were resistant to streptomycin, and it was proven by PCR assay that 18 of the 21 streptomycin resistant isolates have the strB gene. In sixteen of the 21 streptomycin resistant isolates, it was occurred a point mutation altered codon lysine (AAG)-41 of rpsL gene to arginine (AGG). The streptomycin-sensitive isolates easily acquired the resistance by mixed culture with resistant isolates. The strB gene was amplified from the isolates that acquired the resistance by mixed culture, and one isolate of them was also point-mutated in codon 41 of rpsL gene to be resistant. In this study, most of the streptomycin-resistant isolates of X. smithii sub sp. citri in Jeju island expressed the resistance by both chromosomal point mutation and gene acquisition, and the resistance was easily acquired through conjugation by culture mixed with streptomycin resistant and sensitive strains.

Mitochondrial Genome Sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis)

  • Ran, Rongkun;Zhao, Qi;Abuzeid, Asmaa M.I.;Huang, Yue;Liu, Yunqiu;Sun, Yongxiang;He, Long;Li, Xiu;Liu, Jumei;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • 제58권1호
    • /
    • pp.73-79
    • /
    • 2020
  • Echinostoma revolutum is a zoonotic food-borne intestinal trematode that can cause intestinal bleeding, enteritis, and diarrhea in human and birds. To identify a suspected E. revolutum trematode from a red-crowned crane (Grus japonensis) and to reveal the genetic characteristics of its mitochondrial (mt) genome, the internal transcribed spacer (ITS) and complete mt genome sequence of this trematode were amplified. The results identified the trematode as E. revolutum. Its entire mt genome sequence was 15,714 bp in length, including 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding region (NCR), with 61.73% A+T base content and a significant AT preference. The length of the 22 tRNA genes ranged from 59 bp to 70 bp, and their secondary structure showed the typical cloverleaf and D-loop structure. The length of the large subunit of rRNA (rrnL) and the small subunit of rRNA (rrnS) gene was 1,011 bp and 742 bp, respectively. Phylogenetic trees showed that E. revolutum and E. miyagawai clustered together, belonging to Echinostomatidae with Hypoderaeum conoideum. This study may enrich the mitochondrial gene database of Echinostoma trematodes and provide valuable data for studying the molecular identification and phylogeny of some digenean trematodes.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.

Endoplasmic recticulum stress와 관련된 유전자기능과 전사조절인자의 In silico 분석 (In Silico Analysis of Gene Function and Transcriptional Regulators Associated with Endoplasmic Recticulum (ER) Stress)

  • 김태민;여지영;박찬선;이문수;정명호
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1159-1163
    • /
    • 2009
  • ER stress에 관련된 유전자의 기능변화와 전사조절인자 분석하기 위해 ER stress를 유도한 간세포에서 expression microarray로 유전자 발현을 확보한 후 GSECA로 분석하였다. ER stress가 유도되면, ER에 주어지는 과도한 부하를 감소시키는 기능들이 증가하는 반면, ER stress가 더 증가함에 따라 ATP 생성이나 DNA repair, 더 나아가 세포분열의 기능이 감소하는 등 세포가 damage을 받음을 알 수 있었다. ER stress에 관련된 전사조절인자로는 FOX04, AP-1, FOX03, HNF4, IRF-1, GATA 등의 전사조절인자들이 ER stress에 의해 발현이 증가하는 유전자들의 promoter에 공통적으로 존재하였으며, E2F, Nrf-1, Elk-1, YY1, CREB, MTF-1, STAT-1, ATF 등의 전사인자들이 발현이 감소하는 유전자들의 promoter에서 공통적으로 존재하여, 이들의 전사인자들이 ER stress에 의한 유전자의 발현조절에 중요한 역할을 하는 전사조절인자임을 알 수 있었다.

생물정보학을 이용한 연체동물의 NLS (Nuclear Localization Signals) 포함 단백질의 분석 (Bioinformatic Analysis of NLS (Nuclear Localization Signals)-containing Proteins from Mollusks)

  • 이용석;강세원;조용훈;곽희철;채성화;최상행;안인영;박홍석;한연수;고원규
    • 한국패류학회지
    • /
    • 제22권2호
    • /
    • pp.109-113
    • /
    • 2006
  • 연체동물 유래 아미노산 서열 22,138 개에서 NLS가 예측되는 아미노산 서열은 266 개였으며 이는 연체동물 전체 아미노산 중 1.2% 정도였다. 또한 현재 등재되어 있는 연체동물 8,314 종 중 NLS를 포함한 아미노산이 밝혀진 생물은 60여종에 불과 하였다. 현재 알려진 연체동물 서열 중에는 두족 강의 경우가 NLS를 포함한 아미노산이 많을 것으로 예측되었다.

  • PDF

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

누에 중장유래 생체방어 관련 유전자 개발 연구 (A Study on the Development of an Immune Related Genes from Midgut of Silkworm)

  • 최광호;구태원;김성렬;박승원;김성완;강석우
    • 한국잠사곤충학회지
    • /
    • 제50권2호
    • /
    • pp.140-144
    • /
    • 2012
  • 본 연구는 누에 중장으로부터 면역 관련 유전자를 대량 발굴하고 발현 특성을 분석함으로서 곤충 유래 신기능성 의약품 개발을 위한 유전자 소재를 발굴하고자 하였다. 우선 곤충병원성 섭식에 의한 누에 품종에 따른 중장 면역원으로서 적성 병원성 세균인 X. nematophila 등을 선발하고 누에 천연 면역인자의 발굴을 위해 최적 감염 조건을 설정하였다. 감염된 누에 중장 mRNA를 순수 분리하여 subtraction cDNA 유전자은행 1종씩 제작하고, subtractive differential display hybridization 방법에 의해 누에 중장 면역관련 유전인자를 선발하였다. 선발된 유전자의 정보 분석 결과, 세포 내 다양한 생물학적 기능을 수행하는 것으로 알려진 ribosomal protein L5 mRNA 등 면역 관련 유전자 9종을 선발하였다. 본 연구에서 선발된 누에 천연 면역 관련 인자는 신기능성 의약품 소재로 개발하기 위해서는 기능분석 연구가 지속되어야 할 것으로 사료된다.