• Title/Summary/Keyword: riboflavin synthesis

Search Result 9, Processing Time 0.018 seconds

Expression of the Genes Involved in the Synthesis of Riboflavin from Photobacterium species of Bioluminescent Marine Bacteria (해양 발광 박테리아 Photobacterium Species의 Riboflavin 생합성에 관여하는 유전자들의 발현)

  • 이찬용
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The genes involved in riboflavin synthesis (ribI, II, III, and IV) were found immediately downstream of luxG in the lux operon from Photobacterium species. The single stranded DNA containing the intergenic region of lux genes and rib genes from Photobacterium phosphoreum was fully protected by P. phosphoreum mRNA from the S1 nuclease mapping assay suggesting that a transcriptional terminator was not present in the region. In addition, the levels of riboflavin synthase activity in P. phosphoreum was increased during the development of bacterial bioluminescence in the same fashion as the luciferase and fatty acid reductase activities. Insertion of the Photobacterium leiognathi DNA extending from luxB to ribII, between a strong lux promoter and a reporter gene (chloramphenicol acetyltransferase, CAT) and transferred by conjugation into P. leiognathi, did not affect expression of reporter gene. Moreover the CAT gene was not expressed in an analogous construct missing the lux promoter indicating that a promoter was not present in this region. Based on the data here, it can be concluded that the lux genes and rib genes in Photobacterium species are under common regulation.

  • PDF

Effect of pH, Temperature, and added Sucrose on the Production of Vitamin $B_{12}$ and Riboflavin by Bacillus megaterium and Enterobacter aerogenes (온도, pH 및 첨가된 Sucrose가 Bacillus megaterium 과 Enterobacter aerogenes 에 의한 비타민 $B_{12}$ 와 Riboflavin 생산에 미치는 영향)

  • Chung, Hee-Jong;Marion L. Fields
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.112-115
    • /
    • 1987
  • Optimal pH temperature and sucrose content for the production of vitamin B$_{12}$ and riboflavin by Bacillus megaterium and Enterobacter aerogenes was studied by microbiological analysis. Optimal pH for the production of B$_{12}$ was 6.0 by B. megaterium while the pH for E. aerogenes was 5.0. However, upon the addition of sucrose the optimal pH for B. megaterium shifted to 7.5 but E. aerogenes remained at pH 5.0. In the absence of sucrose, pH did not influence the yields of riboflavin produced by either bacterium. Addition of sucrose stimulated synthesis of riboflavin by both bacteria. Temperature had little effect on the production of vitamins by either bacterium.

  • PDF

The Functions of the Riboflavin Genes in the lux Operon from Photobacterium Species (Photobacterium Species의 lux 오페론에서 발견된 Riboflavin 생합성 유전자들의 기능)

  • 이찬용;임종호
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.173-179
    • /
    • 2002
  • The functions of riboflavin synthesis genes ( ribI,II,III and IV) found immediately downstream of luxG in the lux operon from Photobacterium species were identified using the biochemical and genetical analysis. The ribI-III gene codes for protein corresponding to that coded by the second (riboflavin synthase), third (3,4-dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II) and fourth (lumazine synthase) gene, respectively, of Bacillus subtilis rib operon with the respective gene procuct sharing 41-50% amino acid sequence identity. Unexpectedly, the sequence of the ribIV product of Photobacterium phosphoreum does not correspond in sequence to the protein encoded by the fifth rib gene of Bacillus subtilis. Instead the gene (ribIV) codes for a polypeptide similar in sequence to GTP cyclohydrolase II of Escherichia coli and the carboxy terminal domain of the third rib gene from Bacillus subtilis. Complementation of Escherichia coli riboflavin auxotrophs showed that the function of the gene products of ribII and ribIV are DHBP synthase and GTP cyclohydrolase II, respectively. In addition the experiment, showing that increase in thermal stability of riboflavin synthase coded by ribIon coexpression with ribIII, provided indirect evidence that the latter gene codes for lumazine synthase.

The Lux Genes and Riboflavin Genes in Bioluminescent System of Photobacterium leiognathi Are under Common Regulation

  • Sung, Nack-Do;Lee, Chan-Yong
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • The key riboflavin synthesis genes are located immediately downstream of luxG in the lux operon from Photobacterium leiognathi. It is of interest that a site capable of forming a rho-independent terminator does not appear to be present between luxG and ribE in our previous data. These results raise the question of whether the transcription of lux and rib genes is integrated or not. In order to answer the question, in vivo transcriptional assay and Southern blot were examined. These studies demonstrate that neither transcriptional terminator nor promoter site is present in the intergenic region between of lux and rib genes as well as that the riboflavin genes are single copy in a chromosome of Photobacterium leiognathi.

  • PDF

Studies on the Plant Plant Pathogenic Corynebacteria; The Synthesis of B Group Vitamins by Plant Pathogenic Bacteria (Corynebacterium 속 식물병원세균에 관한 연구 -식물병원세균의 Vitamin B군의 합성 -)

  • Kim Jong-wan;Mukoo Hideo
    • Korean journal of applied entomology
    • /
    • v.14 no.3 s.24
    • /
    • pp.155-161
    • /
    • 1975
  • The results of studies on the synthesis of B group vitamins by plant pathogenic bacteria indicate that most bacteria utilize thiamine, nicotinic acid, biotin and P-Aminobenzoic acid as growth factors. Riboflavin (vitamin $B_2$) was produced by most bacterial genera including the Corynebacteria but with the exception of C. rathay and C.fasciant. The results suggest that the ability to produce riboflavin is not a generic characteristic of Corynebacterium, and that the accuracy of the ultra-violet light method (one of the diagnostic tests for potato bacterial ring rot disease caused by Corynebacterium sepedonicum) must he reconsidered.

  • PDF

Complete genome sequence of Lactobacillus plantarum SK151 isolated from kimchi (김치로부터 분리한 Lactobacillus plantarum SK151의 유전체 염기서열 해독)

  • Amoranto, Mia Beatriz C.;Oh, Ju Kyoung;Bagon, Bernadette B.;Hwang, In-Chan;Kim, Sang Hoon;Cho, Chun-Sung;Kang, Dae-Kyung
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.295-298
    • /
    • 2018
  • Lactobacillus plantarum is a Gram-positive, facultative heterofermentative, nonspore-forming nonmotile bacterium found in a wide range of environmental niches. Here we present the complete genome sequence of L. plantarum SK151 isolated from kimchi, which shows high adhesion to intestinal epithelial cells. The genome is 3,231,249 bp in length and has a GC content of 44.6%. The genome contains genes related to cell adhesion and a complete operon for riboflavin biosynthesis.

Characterization of ent-Kaurenoic Acid 13-Hydroxylase in Steviol Biosynthesis of Stevia rebaudiana Bertoni (Stevia rebaudiana Bertoni의 Steviol 생합성 효소 ent-Kaurenoic Acid 13-Hydroxylase의 특성)

  • Shibata, Hitoshi;Kim, Keun-Ki
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.501-507
    • /
    • 1997
  • Chloroplasts isolated from Stevia rebaudiana Bertoni leaves contained an enzyme activity which catalyzed hydroxylation of ent-kaurenoic acid (ent-kaur-16-en-19-oic acid; ent-KA) to steviol (ent-13-hydroxy kaur-16-en-19-oic acid), the diterpenoid carboxylic alcohol which is the aglycone of sweet stevioside-related glycosides. $[^(14)C]-methylated$ ent-KA was used to localize ent-KA hydroxylase. $[^(14)C]-methyl-KA$ was most actively was transformed into methyl-steviol in chloroplast. The enzymatic activity was found in stroma fraction but not in thylakoid membrane in Stevia rebaudiana Bertoni. However, ent-KA 13-hydroxylase activity was not detected in stroma fraction of either Spinacia oleracea and Solidago altissima. The reaction products using $[^(14)C]-methyl-KA$ were purified and identified on TLC autoradiogram. The hydroxylation of ent-KA from stromal protein to form steviol required NADPH and oxygen. FAD and riboflavin stimulated the enzyme activity 1.5-and 1.7-fold, respectively. It also turned out that the activity of this enzyme using methyl-KA as a substrate was 16.7% that of ent-KA. The purified ent-KA 13-hydroxylase did not act on t-cinnamic acid, 4-hydroxyphenyl acetic acid, choline and resorcinol, known as monooxygenase and hydroxylase substrates.

  • PDF

Optimization of Culture Conditions for D-Ribose Production by Transketolase-Deficient Bacillus subtilis JY1

  • Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.665-672
    • /
    • 2004
  • D-Ribose is a five-carbon sugar used for the commercial synthesis of riboflavin, antiviral agents, and flavor enhancers. Batch fermentations with transketolase-deficient B. subtilis JY1 were carried out to optimize the production of D-ribose from xylose. The best results for the fermentation were obtained with a temperature of $37^{\circ}C$ and an initial pH of 7.0. Among various sugars and sugar alcohols tested, glucose and sucrose were found to be the most effective for both cell growth and D-ribose production. The addition of 15 g/l xylose and 15 g/l glucose improved the fermentation performance, presumably due to the adequate supply of ATP in the xylose metabolism from D-xylulose to D-xylulose-5-phosphate. A batch culture in a 3.7-1 jar fermentor with 14.9 g/l xylose and 13.1 g/l glucose resulted in 10.1 g/l D-ribose concentration with a yield of 0.62 g D-ribose/g sugar consumed, and 0.25 g/l-h of productivity. Furthermore, the sugar utilization profile, indicating the simultaneous consumption of xylose and glucose, and respiratory parameters for the glucose and sucrose media suggested that the transketolase-deficient B. subtilis JY1 lost the glucose-specific enzyme II of the phosphoenolpyruvate transferase system.