• Title/Summary/Keyword: rhodopsin family

Search Result 9, Processing Time 0.022 seconds

Insight into Rhodopsin Diversity from Viewpoint of Counterion

  • Terakita, Akihisa
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.33-36
    • /
    • 2002
  • In vertebrate rhodopsins the glutamic acid at position 113 serves as a counterion to stabilize the protonated retinylidene Schiff base linkage and to shift the spectrum to the visible region. Invertebrate rhodopsins and retinochrome have the amino acid residue different from glutamic acid or asparatic acid at this position and therefore, these pigments may have a counterion at different position. We first investigated the counterion in retinochrome by site specific mutagenesis. The results showed that the counterion is the glutamic acid at position 181, where almost of all the pigments including vertebrate and invertebrate rhodopsins in the rhodopsin family have a glutamic acid or an aspartic acid. In vertebrate rhodopsins, however, Glu 181 does not act as a counterion, and the red-sensitive cone pigments have a histidine at this position, which serves as a chloride-binding site for red-shift of the absorption spectrum. These findings suggested that the role of Glu181 as a counterion may be weakened by the newly acquired counterion at position 113. Taken together with our recent studies on an invertebrate-type rhodopsin, the rhodopsin diversity was discussed from viewpoint of counterion.

  • PDF

Characterization of a Xanthorhodopsin-homologue from the North Pole

  • Kim, Se Hwan;Cho, Jang-Cheon;Jung, Kwang-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.60-63
    • /
    • 2013
  • Rhodopsins belong to a family of membrane-embedded photoactive retinylidene proteins. One opsin gene was isolated from ${\beta}$-proteobacterium (IMCC9480) which had been collected at the North Pole. It is very similar to Xanthorhodopin (XR) of HTCC2181. In this study, we carried out basic characterization of the rhodopsin. It has ${\lambda}max$ of 536, 554, and 546 nm at pH 4.0, 7.0, and 10.0, respectively. Since the pKa of its proton acceptor is around 6.27, we measured its proton pumping activity and photocycling rate at pH 8.0. It has a typical proton acceptor (D99) and donor (E110) which mediate proton translocation from intracellular to extracellular region when deduced from the sequence alignments. On the basis of in vitro proton pumping activity, it was proposed to have fast photocycling rate with M and O intermediates, indicating that it is a typical ion-pumping rhodopsin. Since the XR has not yet been expressed in any other heterologous expression system, we tried to get much more information about the XR through the XR-homologue rhodopsin.

Rhodopsin Chromophore Formation and Thermal Stabilities in the Opsin Mutant E134Q/M257Y (옵신 mutant E134Q/M257Y의 로돕신 형성과 열안정성 분석)

  • Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.863-870
    • /
    • 2012
  • Rhodopsin, a dim light photoreceptor, has been regarded as one of the model systems for the structural and functional study of G protein-coupled receptors (GPCRs). Constitutively active mutant GPCRs leading to the activation of heterotrimeric GDP/GTP-binding protein signaling in the absence of ligand binding are of interest for the study of the activation mechanism in GPCRs. The present study focused on the opsin mutant E134Q/M257Y, which showed a moderate level of constitutive activity and the formation of two distinct rhodopsin chromophores with absorption maxima of 500 nm and 380 nm, depending on the presence of an inverse agonist, 11-cis-retinal, and an agonist, all-trans-retinal, respectively. Reconstitution of the mutant rhodopsin upon incubation with different ratios of 11-cis-retinal and the all-trans-retinal, as well as upon sequential binding of the two retinals, indicated its preferential binding to 11-cis-retinal. The thermal stability of the 11-cis-retinal-bound form of the E134Q/M257Y mutant was lower than that of the mutants containing a single replacement but higher than that of the all-trans-retinal-bound forms. The mutant also showed a lower stability in its opsin state as compared with that of the wild-type opsin but had little effects on the binding affinity to 11-cis-retinal. Information obtained in this study will be helpful for analyzing the structural changes associated with the activation of rhodopsin and GPCRs.

Microbial Rhodopsins: Genome-mining, Diversity, and Structure/Function

  • Jung, Kwang-Hwan;Vishwa Trivedi;Yang, Chii-Shen;Oleg A. Sineschekov;Elena N. Spudich;John L. Spudich
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.45-48
    • /
    • 2002
  • Microbial rhodopsins, photoactive 7-transmembrane helix proteins that use retinal as their chromophore, were observed initially in the Archaea and appeared to be restricted to extreme halophilic environments. Our understanding of the abundance and diversity of this family has been radically transformed by findings over the past three years. Genome sequencing of cultivated microbes as well as environmental genomics have unexpectedly revealed archaeal rhodopsin homologs in the other two domains of life as well, namely Bacteria and Eucarya. Organisms containing these homologs inhabit such diverse environments as salt flats, soil, freshwater, and surface and deep ocean waters, and they comprise a broad phylogenetic range of microbial life, including haloarchaea, proteobacteria, cyanobacteria, fungi, and algae. Analysis of the new microbial rhodopsins and their expression and structural and functional characterization reveal that they fulfill both ion transport and sensory functions in various organisms, and use a variety of signaling mechanisms. We have obtained the first crystallographic structure for a photosensory member of this family, the phototaxis receptor sensory rhodopsin II (SRII, also known as phoborhodopsin) that mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The structure obtained from x-ray diffraction of 3D crystals prepared in a cubic lipid phase reveals key features responsible for its spectral tuning and its sensory function. The mechanism of SRII signaling fits a unified model for transport and signaling in this widespread family of phototransducers.

  • PDF

Identification of Functional Site of S-Modulin

  • Tachibanaki, Shuji;Nanda, Kumiko;Sasaki, Kenji;Ozaki, Koichi;Kawamura, Satoru
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.281-283
    • /
    • 2002
  • S-modulin in frog or its bovine homologue, recoverin, is a 26 kDa EF-hand $Ca^{2+}$-binding protein found in rod photoreceptors. The $Ca^{2+}$ -bound form of S-modulin binds to rhodopsin kinase (Rk) and inhibits its activity. Through this regulation, S-modulin is believed to modulate the light-sensitivity of a rod. In the present study, we tried to identify the interaction site of the $Ca^{2+}$ -bound form of S-modulin to Rk. First, we mapped roughly the interaction regions by using partial peptides of S-modulin. The result suggested that a specific region near the amino terminus is the interaction site of S- modulin. We then identified the essential amino acid residues in this region by using S-modulin mutant proteins: four amino acid residues were suggested to interact with Rk. These residues are located in a small closed pocket in the $Ca^{2+}$-free, inactive form of S-modulin, but exposed to the surface of the molecules in the $Ca^{2+}$ -bound, active form of S-modulin. Two additional amino acid residues were found to be crucial for the $Ca^{2+}$ -dependent conformational changes of S-modulin. The present study firstly identified the functional site of S-modulin, a member of a neuronal calcium sensor protein family.in family..

  • PDF

Atypical Actions of G Protein-Coupled Receptor Kinases

  • Kurose, Hitoshi
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.390-397
    • /
    • 2011
  • G protein-coupled receptor kinases (GRKs) and ${\beta}$-arrestins have been known as regulators of G protein-coupled receptors. However, it has been recently reported that GRKs and ${\beta}$-arrestins mediate receptor-mediated cellular responses in a G proteinin-dependent manner. In this scheme, GRKs work as a mediator or a scaffold protein. Among 7 members of the GRK family (GRK1-GRK7), GRK2 is the most extensively studied in vitro and in vivo. GRK2 is involved in cellular migration, insulin signaling, and cardiovascular disease. GRK6 in concert with ${\beta}$-arrestin 2 mediates chemoattractant-stimulated chemotaxis of T and B lymphocytes. GRK5 shuttles between the cytosol and nucleus, and regulates the activities of transcription factors. GRK3 and GRK4 do not seem to have striking effects on cellular responses other than receptor regulation. GRK1 and GRK7 play specific roles in regulation of rhodopsin function. In this review, these newly discovered functions of GRKs are briefly described.

Barcoding and Phylogenetic Inferences in Nine Mugilid Species (Pisces, Mugiliformes)

  • Polyakova, Neonila;Boutin, Alisa;Brykov, Vladimir
    • Animal Systematics, Evolution and Diversity
    • /
    • v.29 no.4
    • /
    • pp.272-278
    • /
    • 2013
  • Accurate identification of fish and fish products, from eggs to adults, is important in many areas. Grey mullets of the family Mugilidae are distributed worldwide and inhabit marine, estuarine, and freshwater environments in all tropical and temperate regions. Various Mugilid species are commercially important species in fishery and aquaculture of many countries. For the present study we have chosen two Mugilid genes with different phylogenetic signals: relatively variable mitochondrial cytochrome oxidase subunit I (COI) and conservative nuclear rhodopsin (RHO). We examined their diversity within and among 9 Mugilid species belonging to 4 genera, many of which have been examined from multiple specimens, with the goal of determining whether DNA barcoding can achieve unambiguous species recognition of Mugilid species. The data obtained showed that information based on COI sequences was diagnostic not only for species-level identification but also for recognition of intraspecific units, e.g., allopatric populations of circumtropical Mugil cephalus, or even native and acclimatized specimens of Chelon haematocheila. All RHO sequences appeared strictly species specific. Based on the data obtained, we conclude that COI, as well as RHO sequencing can be used to unambiguously identify fish species. Topologies of phylogeny based on RHO and COI sequences coincided with each other, while together they had a good phylogenetic signal.

In-silico Modeling of Chemokine Receptor CCR2 And CCR5 to Assist the Design of Effective and Selective Antagonists

  • Kothandan, Gugan;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2012
  • Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. The application of structure-based in-silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human CCR2 and CCR5, the most important members of the chemokine receptor family and also a potential drug target. Herein, we review the success stories of combined receptor modeling/mutagenesis approach to probe the allosteric nature of chemokine receptor binding by small molecule antagonists for CCR2 and CCR5 using Rhodopsin as template. We also urged the importance of recently available ${\beta}2$-andrenergic receptor as an alternate template to guide mutagenesis. The results demonstrate the usefulness and robustness of in-silico 3D models. These models could also be useful for the design of novel and potent CCR2 and CCR5 antagonists using structure based drug design.

Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

  • Ahmed, Asif;Nagarajan, Shanthi;Doddareddy, Munikumar Reddy;Cho, Yong-Seo;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2008-2014
    • /
    • 2011
  • Serotonin or 5-hydroxytryptamine subtype 2C ($5-HT_{2C}$) receptor belongs to class A amine subfamily of G-protein-coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (${\beta}$2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.