DOI QR코드

DOI QR Code

Rhodopsin Chromophore Formation and Thermal Stabilities in the Opsin Mutant E134Q/M257Y

옵신 mutant E134Q/M257Y의 로돕신 형성과 열안정성 분석

  • Kim, Jong-Myoung (Department of Marine-BioMaterials and Aquaculture, College of Fisheries Sciences, PuKyong National University)
  • 김종명 (부경대학교 해양바이오신소재학과)
  • Received : 2012.05.21
  • Accepted : 2012.06.05
  • Published : 2012.07.30

Abstract

Rhodopsin, a dim light photoreceptor, has been regarded as one of the model systems for the structural and functional study of G protein-coupled receptors (GPCRs). Constitutively active mutant GPCRs leading to the activation of heterotrimeric GDP/GTP-binding protein signaling in the absence of ligand binding are of interest for the study of the activation mechanism in GPCRs. The present study focused on the opsin mutant E134Q/M257Y, which showed a moderate level of constitutive activity and the formation of two distinct rhodopsin chromophores with absorption maxima of 500 nm and 380 nm, depending on the presence of an inverse agonist, 11-cis-retinal, and an agonist, all-trans-retinal, respectively. Reconstitution of the mutant rhodopsin upon incubation with different ratios of 11-cis-retinal and the all-trans-retinal, as well as upon sequential binding of the two retinals, indicated its preferential binding to 11-cis-retinal. The thermal stability of the 11-cis-retinal-bound form of the E134Q/M257Y mutant was lower than that of the mutants containing a single replacement but higher than that of the all-trans-retinal-bound forms. The mutant also showed a lower stability in its opsin state as compared with that of the wild-type opsin but had little effects on the binding affinity to 11-cis-retinal. Information obtained in this study will be helpful for analyzing the structural changes associated with the activation of rhodopsin and GPCRs.

세포막 단백질 중 가장 큰 family를 형성하는 G protein-coupled receptor (GPCR)는 세포 외부의 다양한 신호를 세포 내 G 단백질의 활성화를 통하여 전달한다. 외부 신호자극이 없는 조건에서도 활성을 나타내는 항활성 돌연변이(constitutively active mutants, CAM)는 GPCR 신호전달 이상으로 인한 질병 치료나 GPCR의 활성화 구조연구에 좋은 대상이다. 본 연구는 시각수용체 로돕신에서 약한 항활성을 보이는 CAM의 하나인 E134Q/M257Y를 대상으로, inverse agonist와 agonist 존재 하에서 형성하는 두 가지 chromophore의 특성을 연구하였다. 이 CAM은 11-cis-retinal과 all-trans-retinal 존재 하에서 각기 최대흡광도가 500 nm와 380 nm인 로돕신을 형성한다. 두 가지 retinal을 다양한 비로 혼합한 조건과 연속적으로 결합하는 조건 하에서 각 형태의 로돕신 형성을 조사한 결과 E134Q/M257Y mutant는 11-cis-retinal과 우선적으로 결합함을 보여준다. E134Q/M257Y mutant는 wild type 옵신에 비해 11-cis-retinal에 대한 친화도는 별다른 차이가 없으나 옵신과 로돕신 상태의 안정성이 낮음이 확인되었다. 본 연구 결과는 GPCR의 활성화 시 일어나는 부분적 구조변화에 대한 정보를 제공하고, 구조정보에 기반한 GPCR신호를 미세하게 조절하는 물질의 발굴이나 개발에 유용하게 이용될 것이다.

Keywords

References

  1. Bond, R. A. and Ijzerman, A. P. 2006. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci. 27, 92-96. https://doi.org/10.1016/j.tips.2005.12.007
  2. Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F. and Ernst, O. P. 2011. Crystal structure of metarhodopsin II. Nature 471, 651-5. https://doi.org/10.1038/nature09789
  3. Costanzi, S., Siegel, J., Tikhonova, I. G. and Jacobson, K. A. 2009. Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr. Pharm. Des. 15, 2994-4002.
  4. Deupi, X. and Standfuss, J. 2011 Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21, 541-551. https://doi.org/10.1016/j.sbi.2011.06.002
  5. Han, M., Smith, S. O. and Sakmar, T. P. 1998. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6.. Biochemistry 37, 8253-8261. https://doi.org/10.1021/bi980147r
  6. Hopkins, A. L. and Groom, C. R. 2002. The druggable genome. Nat. Rev. Drug Discov. 1, 727-30. https://doi.org/10.1038/nrd892
  7. Khorana, H. G. 2000. Molecular biology of light transduction by the mammalian photoreceptor rhodopsin. J. Biomol. Struc. Dyn. 11, 1-16.
  8. Kim, J. -M., Thurmond, R. L., Altenbach, C., Khorana, H. G. and Hubbell, W. L. 1997. Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proc. Natl. Acad. Sci. USA 94, 14273-14278. https://doi.org/10.1073/pnas.94.26.14273
  9. Kim, J. M., Altenbach, C., Kono, M., Oprian, D. D., Hubbell, W. L. and Khorana, H. G. 2004. Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge. Proc. Natl. Acad. Sci. USA 101, 12508-13. https://doi.org/10.1073/pnas.0404519101
  10. Knowles, A. and Priestley, A. 1978 The preparation of 11-cis-retinal. Vision Res. 18, 115-116. https://doi.org/10.1016/0042-6989(78)90086-X
  11. Molday, R. S. and MacKenzie, D. 1983. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22, 653-660. https://doi.org/10.1021/bi00272a020
  12. Oprian, D. D., Molday, R. S., Kaufman, R. J. and Khorana, H. G. 1987. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. USA 84, 8874-78. https://doi.org/10.1073/pnas.84.24.8874
  13. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., LeTrong, I., Teller, D. C., Okada, T., Stenkamp, R. E., et al. 2000 Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739-745. https://doi.org/10.1126/science.289.5480.739
  14. Papermaster, D. S. 1982. Preparation of antibodies to rhodopsin and the large protein of rod outer segment. Methods Enzymol. 81, 240-246. https://doi.org/10.1016/S0076-6879(82)81037-9
  15. Park, J. H., Scheerer, P., Hoffmann, K. P., Choe, H. W. and Ernst, O. P. 2008. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183-187. https://doi.org/10.1038/nature07063
  16. Parnot, C., Miserey-Lenkei, S., Bardin, S., Corvol, P. and Clauser, E. 2002. Lessons from constitutively active mutants of G protein-coupled receptors. Trends Endocrinol. Metab. 13, 336-343. https://doi.org/10.1016/S1043-2760(02)00628-8
  17. Rao, V. R. and Oprian, D. D. 1996. Activating mutations of rhodopsin and other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 25, 287-314. https://doi.org/10.1146/annurev.bb.25.060196.001443
  18. Rasmussen, S. G., DeVree, B. T., Zou, Y., Chung, K. Y., Kobilka, T. S., et al. 2012. Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 477, 549-555.
  19. Reeves, P. J., Hwa, J. and Khorana, H. G. 1999. Structure and function in rhodopsin: Kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serves as probes of the retinal binding pocket. Proc. Natl. Acad. Sci. USA 96, 1927-31. https://doi.org/10.1073/pnas.96.5.1927
  20. Sakmar, T. P., Franke, R. R. and Khorana, H. G. 1989. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 86, 8309-8313. https://doi.org/10.1073/pnas.86.21.8309
  21. Sambrook, J. and Russell, D. W. 2001. Molecular cloning: A laboratory manual. 3rd edition. Cold Spring Harbor Laboratory Press, NY, Plainview.
  22. Standfuss J., Edwards, P. C., D'Antona, A. and Schertler, G. F. X. 2011. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656-661. https://doi.org/10.1038/nature09795
  23. Xie, G., Gross, A. K. and Oprian, D. D. 2003. An opsin mutant with increased thermal stability. Biochemistry 42, 1995-2001. https://doi.org/10.1021/bi020611z
  24. Xu, F., Wu, H., Katritch, V., Han, G. W., Jacobson, K. A., Gao, Z. G., Cherezov, V. and Stevens, R. C. 2011. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322-327. https://doi.org/10.1126/science.1202793