• Title/Summary/Keyword: rhizosphere pseudomonas bacteria

Search Result 68, Processing Time 0.023 seconds

Screening of Salicylic acid Producing Rhizobacteria Isolated from Plant Roots and Rhizosphere (식물의 뿌리와 근권으로부터 Salicylic acid를 생성하는 근권세균의 검색)

  • 이민웅
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.598-602
    • /
    • 1998
  • Twenty two rhizobacteria were isolated from the roots and rhizosphere of radish, carnation, potato and tomato. There isolates produced a fluorescent pigment in King's B medium and identified as Pseudomonas spp. These isolates colonized roots and rhizosphere of the host plants. In the study of cultural characteristics of the bacteria, the pH of the culture broth was changed from neutral (7.0) to alkali (8.8∼9.41) and the numbers of cells were increased from 106 to 108 after 40 hr of incubation in basal standard succinate medium. The salicylic acid production identified by pink color reaction were observed in 7 bacteria. Out of these 7 salicylic acid producing bacteria, only 2 strains of bacteria such as Pseudomonas fluorescens RS006, and Pseudomonas sp. EN401 were confirmed as salicylic acid producers by optical density measurement. Therefore, for screening of salicylic acid producing bacteria from the roots and rhizosphere, color reaction of the culture medium should be done in the first step, and then optical density measurement of culture extract should be made for the confirmation of salicylic acid production.

  • PDF

Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

  • Kong, Hyun Gi;Kim, Nam Hee;Lee, Seung Yeup;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.136-144
    • /
    • 2016
  • Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

Studies on the Root Rot of Ginseng(III) (인삼근부병에 관한 연구 3)

  • 이민웅
    • Korean Journal of Microbiology
    • /
    • v.12 no.4
    • /
    • pp.153-158
    • /
    • 1974
  • Around and in the area of Wolgot-Muon, Gimpo-Gun, Kyunggi province, I examined total bacteria, general Pseudomonas spp., fluorescent Pseudomonas spp., in soil layers and also in different kinds of soil of respective diseased, uncultivated, and healthy areas, and found the followings. 1. In the diseased and uncultivated areas, the content of moisture and silt was greater than in the healthy area. 2. Contrary to the above, the healthy area contained a greater amount of inorganic elements such as $P_2O_5$, K, Ca and of soil particle such as Cs and Fs. The degree of pH and content of Mg were even in three types of soils. 3. Total bacteria were found in abundance in the healthy soil. It was observed that in all types of areas, bacteria reside in abundance in the rhizosphere, i.e., 10-15 cm layers and that the closer the surface, the greater the numbers of the bacteria. 4. General Pseudomonas spp. were also found to the greater in number on the surface of the soil, especially so in the rhizosphere, with the numbers decreasing as the soil layers increase. Numbers of this bacteria in all types of area were nearly uniform. 5. A great number of fluorescent Pseudomonas spp. were found in the diseased area, especially so in the rhizosphere.

  • PDF

Colonizing Ability of Pseudomonas fluorescens 2112, Among Collections of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens spp. in Pea Rhizosphere

  • Kim, Sang-Dal;Fuente, Leonardo De La;Weller, David M.;Thomashow, Linda S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.763-770
    • /
    • 2012
  • Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4-diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 genotypes of 2,4-DAPG producers, by phlD restriction fragment length polymorphism (RFLP). The colonizing ability of P. fluorescens 2112 in pea rhizosphere was equal to the well-known pea colonizers, P. fluorescens Q8r1 (genotype D) and MVP1-4 (genotype P), after 6 cycling cultivations for 18 weeks. Four tested 2,4-DAPG-producing Pseudomonas spp. could colonize with about a 96% dominance ratio against total bacteria in pea rhizosphere. The strain P. fluorescens 2112 was as good a colonizer as other Pseudomonas spp. genotypes in pea plant growth-promoting rhizobacteria.

Fluorescent Pseudomonas Induced Systemic Resistance to Powdery Mildew in Mulberry (Morus spp.)

  • Pratheesh Kumar, Padinjare Mannath;Sivaprasad, Vankadara
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Native fluorescent pseudomonas bacteria were isolated from rhizosphere soil of mulberry and were evaluated against powdery mildew. In vitro conidial germination study showed significant (P<0.05) variation in conidial germination by bacterial strains Pf1 and Pf3. Mildew incidence was significantly varied due to treatment with various pseudomonas strains in vivo. Significantly (P<0.05) less mildew incidence was in plants treated with the bacterial strain Pf1 (9.11%) followed by Pf3 (13.48%) controlling 69.40% and 54.75% respectively compared with untreated control. Similarly, mildew severity was least (8.51%) in plants treated with strain Pf1 followed by Pf5 (9.23%) and Pf3 (9.72%) controlling the severity by 84.51%, 77.01% and 71.96% respectively compared with control. The bacterial strains significantly influenced biochemical constituents such as chlorophyll, protein and soluble sugar content of the mulberry leaf. Similarly, bacterial strains significantly increased the activity of the peroxidase (PO) and Polyphenol oxydase (PPO) activity from $7^{th}$ day up to the $28^{th}$ day after treatment. The strain Pf1, Pf3 and Pf5 exhibited a marked enhancement in the peroxidase at different periods of infection. Significant (P<0.01) negative correlation was found between powdery mildew severity with phenol content ($R^2=0.67$) as well as peroxidase ($R^2=0.92$) and polyphenol oxidase ($R^2=0.72$) activity thus confirms induction of systemic resistance in mulberry by pseudomonas bacteria. The study shows scope for exploration of rhizosphere fluorescent pseudomonas bacteria for induction of systemic resistance in mulberry to contain powdery mildew disease effectively.

Molecular Detection of Catabolic Genes for Polycyclic Aromatic Hydrocarbons in the Reed Rhizosphere of Sunchon Bay

  • Kahng Hyung-Yeel;Oh Kye-Heon
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.572-576
    • /
    • 2005
  • This study focused on detecting catabolic genes for polycyclic aromatic hydrocarbons (PAHs) distributed in the reed rhizosphere of Sunchon Bay, Korea. These marsh and mud environments were severely affected by human activities, including agriculture and fisheries. Our previous study on microbial roles in natural decontamination displayed the possibility that PAH-degrading bacteria, such as Achromobacter sp., Alcaligenes sp., Burkholderia sp. and Pseudomonas sp. play an important decontamination role in a reed rhizosphere. In order to gain further fundamental knowledge on the natural decontamination process, catabolic genes for PAH metabolism were investigated through PCR amplification of dioxygenase genes using soil genomic DNA and sequencing. Comparative analysis of predicted amino acid sequences from 50 randomly selected dioxygenase clones capable of hydroxylating inactivated aromatic nuclei indicated that these were divided into three groups, two of which might be originated from PAH-degrading bacteria. Amino acid sequences of each dioxygenase clone were a part of the genes encoding enzymes for initial catabolism of naphthalene, phenanthrene, or pyrene that might be originated from bacteria in the reed rhizosphere of Sunchon Bay.

Isolation and Characterization of Bacteria Associated with Two Sand Dune Plant Species, Calystegia soldanella and Elymus mollis

  • Park Myung Soo;Jung Se Ra;Lee Myoung Sook;Kim Kyoung Ok;Do Jin Ok;Lee Kang Hyun;Kim Seung Bum;Bae Kyung Sook
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Little is known about the bacterial communities associated with the plants inhabiting sand dune ecosystems. In this study, the bacterial populations associated with two major sand dune plant species, Calystegia soldanella (beach morning glory) and Elymus mollis (wild rye), growing along the costal areas in Tae-An, Chungnam Province, were analyzed using a culture-dependent approach. A total of 212 bacteria were isolated from the root and rhizosphere samples of the two plants, and subjected to further analysis. Based on the analysis of the 16S rDNA sequences, all the bacterial isolates were classified into six major phyla of the domain Bacteria. Significant differences were observed between the two plant species, and also between the rhizospheric and root endophytic communities. The isolates from the rhizosphere of the two plant species were assigned to 27 different established genera, and the root endophytic bacteria were assigned to 21. Members of the phylum Gammaproteobacteria, notably the Pseudomonas species, comprised the majority of both the rhizospheric and endophytic bacteria, followed by members of Bacteroidetes and Firmicutes in the rhizosphere and Alphaproteobacteria and Bacteroidetes in the root. A number of isolates were recognized as potentially novel bacterial taxa. Fifteen out of 27 bacterial genera were commonly found in the rhizosphere of both plants, which was comparable to 3 out of 21 common genera in the root, implying the host specificity for endophytic populations. This study of the diversity of culturable rhizospheric and endophytic bacteria has provided the basis for further investigation aimed at the selection of microbes for the facilitation of plant growth.

Isolation and Characteristics of Exopolysaccharide Producing Bacteria in a Ginseng Root System (인삼 근계로부터 다당 생성세균의 분리 및 특성)

  • Cho, Geon-Yeong;Jeon, In-Hwa;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.297-300
    • /
    • 2013
  • EPS producing bacteria were enumerated in ginseng root system (rhizosphere soil, rhizoplane, inside of root). EPS producing bacterial density of rhizosphere soil, rhizoplane and inside of root were distributed $9.0{\times}10^6$ CFU/g, $7.0{\times}10^6$ CFU/g, and $1.4{\times}10^3$ CFU/g, respectively. Phylogenetic analysis of the 24 EPS producing isolates based on the 16S rRNA gene sequences, EPS producing isolates from rhizosphere soil (RS) belong to genus Arthrobacter (6 strains) and Rhizobium (1 strain). EPS producing bacteria from rhizoplane (RP) were Arthrobacter (6 strains), Rhodococcus (1 strain) and Pseudomonas (1 strain). EPS producing bacteria from inside of root (IR) were categorized into Rhzobium (6 strains), Bacillus (1 strain), Rhodococcus (1 strain), and Pseudomonas (1 strain). Phylogenetic analysis indicated that Arthrobacter may be a member of representative EPS producing bacteria from ginseng rhizosphere soil and rhizoplane, and Rhizobium is typical EPS producing isolates from inside of ginseng root. The yield of EPS was 10.0 and 4.9 g/L by Rhizobium sp. 1NP2 (KACC 17637) and Arthrobacter sp. 5MP1 (KACC 17636). The purified EPS were analyzed by Bio-LC and glucose, galactose, mannose and glucosamine were detected. The major EPS sugar of these strains was glucose (72.7-84.9%).

Tracing of Some Root Colonizing Pseudomonas in the Rhizosphere Using lux Gene Introduced Bacteria (lux Gene을 도입한 생물적 방제 미생물의 근권 정착과 식물 생장 촉진 효과)

  • 김진우;최옥희;강지효;류충민;정미진;김재원;박창석
    • Korean Journal Plant Pathology
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • The use of bioluminescence as a sensitive marker for the detection of Pseudomnas sp. in the rhizosphere was investigated. Transposon Tn4431 which contains a promoterless luciferase operon and tetracycline resistant gene was used. This transposon, present on a suicide vector (pUCD623) in E. coli HB101, was mated with spontaneous rifampicin mutant of Pseudomonas fluorescens B16, a plant growth promoting rhizobacteria (PGPR), and then rifampicin and tetracycline resistant survivors were isolated. Twenty tow mutants wer isolated from the conjugants between E. coli HB101 and P. fluorescens B16. One of these, B16::Tn4431 (L22) recombinant which glowed brightly in the dark was selected for analysis. The cucumber seeds inoculated with L22 were grown in moisten two layers of filter paper and nonsterile soil contained in half cut PVC pipe. The roots were removed from the filter paper and PVC pipe, then placed on the 1/2 LB media plates. The plates were incubated at room temperature for 16 hr. L22 could successfully be detected in the rhizoplane by using the ordinary negative camera film (ASA100-400) with 30 minutes exposure under dark condition. The root colonizing ability and the plant growth promoting effect of L22 were not reduced compared to the untreated bacteria and wild type. L22 was superior to will type.

  • PDF

Biological Control of Pythium Damping-off of Bush Okra Using Rhizosphere Strains of Pseudomonas fluorescens

  • Abdelzaher, Hani M.A.;Imam, M.M.;Shoulkamy, M.A.;Gherbawy, Y.M.A.
    • Mycobiology
    • /
    • v.32 no.3
    • /
    • pp.139-147
    • /
    • 2004
  • A severe damping-off disease of bush okra caused by Pythium aphanidermatum, was diagnosed in plastic houses in Der Attia village, 15 km southwest of El-Minia city, Egypt, during the winter of 2001. Bush okra seedlings showed low emergence with bare patches inside the plastic houses. Seedlings that escaped pre-emergence damping-off showed poor growth, stunting and eventually collapsed. Examination of the infected tissues confirmed only Pythium aphanidermatum, showing its typical intercalary antheridia, and lobulate zoosporangia. P. aphanidermatum was shown to be pathogenic on bush okra under pot and field experiments. Bacteria making inhibition zones against the damping-off fungus P. aphanidermatum were selected. Agar discs from rhizosphere soil of bush okra containing colonies were transferred onto agar plate culture of P. aphanidermatum. After 2 days of incubation, colonies producing clear zones of non-Pythium growth were readily detected. The two bacteria with the largest inhibition zones were identified as Pseudomonas fluorescens. Bush okra emergence(%) in both pot and plastic houses experiments indicated that disease control could be obtained by applying P. fluorescens to the soil or coating the bacteria to the bush okra seeds before sowing. In the plastic houses, application of the bacteria onto Pythium-infested soil and sowing bush okra seeds dressed with bacteria gave 100% emergence. In addition, This was the first reported disease of bush okra by this oomycete in Egypt.