DOI QR코드

DOI QR Code

Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

  • Received : 2015.08.28
  • Accepted : 2015.11.22
  • Published : 2016.04.01

Abstract

Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

Keywords

References

  1. Addison, J. A. and Holmes, S. B. 1995. Effect of two commercial formulations of Bacillus thuringiensis subsp. kurstaki ($Dipel^{(R)}$ 8L and $Dipel^{(R)}$ 8AF) on the Collembolan species Folsomia candida in a soil microcosm study. Bull. Environ. Contam. Toxicol. 55:771-778.
  2. Amann, R. I., Ludwig, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 59:143-169.
  3. Awong, J., Bitton, G. and Chaudhry, G. R. 1990. Microcosm for assessing survival of genetically engineered microorganisms in aquatic environments. Appl. Environ. Microbiol. 56: 977-983.
  4. Bakker, P. A., Glandorf, D. C., Viebahn, M., Ouwens, T. W., Smit, E., Leeflang, P., Wernars, K., Thomashow, L. S., Thomas- Oates, J. E. and van Loon, L. C. 2002. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie van Leeuwenhoek 81:617-624. https://doi.org/10.1023/A:1020526126283
  5. Cheng, J. H., Yang, S. H., Palaniyandi, S. A., Han, J. S., Yoon, T. M., Kim, T. J. and Suh, J. W. 2010. Azalomycin F complex is an antifungal substance produced by Streptomyces malaysiensis MJM1968 isolated from agricultural soil. J. Kor. Soc. Appl. Biol. Chem. 53:545-552. https://doi.org/10.3839/jksabc.2010.084
  6. Choi, G. J., Kim, J. C., Park, E. J., Choi, Y. H., Jang, K. S., Lim, H. K., Cho, K. Y. and Lee, S. W. 2006. Biological control activity of two isolates of Pseudomonas fluorescens against rice sheath blight. Plant Pathol. J. 23:289-294.
  7. Cook, J., Bruckart, W. L., Coulson, J. R., Goettel, M. S., Humber, R. A., Lumsden, R. D., Maddox, J. V., McManus, M. L., Moore, L., Meyer, S. F., Quimby, P. C., Stack, J. P. and Vaughn, J. L. 1996. Safety of microorganisms intended for pest and plant disease control: a frame work for scientific evaluation. Biol. Contr. 7:333-351. https://doi.org/10.1006/bcon.1996.0102
  8. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
  9. Darmon, E. and Leach, D. R. 2014. Bacterial genome instability. Microbiol. Mol. Biol. Rev. 78:1-39. https://doi.org/10.1128/MMBR.masthead.78-2
  10. Dennis, J. J. and Zylstra, G. J. 1998. Plasposons: modular selfcloning mini-transposon derivatives for the rapid genetic analysis of gram-negative bacterial genomes. Appl. Environ. Microbiol. 64:2710-2715.
  11. Donegan, K. K. and Seidler, R. J. 1999. Effects of transgenic plants on soil and plant microorganisms. In Recent Research Development in Microbiology (Ed. S.G. Pandalai) olume 3-1999 Part II. Research Signpost., Trivandrum, India. 415-424.
  12. Duerden, B. I. 1997. Gram-negative and non-spore forming anaerobes and mobiluncus. In: Principles and practice of clinical microbiology. Eds. Emmerson, A. M., Hawkey, P. M., Gillespie, S. H. Chichester: John Wiley & Sons Ltd., pp. 641-661.
  13. Gardes, M. and Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol. Ecol. 2:113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  14. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat. Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129
  15. Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656
  16. Hammer, O., Harper, D. A. T. and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.
  17. Harrington, C. S. and On, S. L. 1999. Extensive 16s rRNA gene sequence diversity in Campylobacter hyointestinalis strains: taxonomic and applied implications. Int. J. Syst. Bacteriol. 49:1171-1175. https://doi.org/10.1099/00207713-49-3-1171
  18. Heo, K. R., Lee, K. Y., Lee, S. H., Jung, S. J., Lee, S. W. and Moon, B. J. 2008. Control of crisphead lettuce damping-off and bottom rot by seed coating with alginate and Pseudomonas aeruginosa LY-11. Plant. Pathol. J. 24:67-73. https://doi.org/10.5423/PPJ.2008.24.1.067
  19. Higuchi, R., Krummel, B. and Saiki, R. K. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351-7367. https://doi.org/10.1093/nar/16.15.7351
  20. Hugenholtz, P. and Pace, N. R. 1996. Identifying microbial diversity in the natural environment: A molecular phylogenetic approach. Trends Biotechnol. 14:190-197. https://doi.org/10.1016/0167-7799(96)10025-1
  21. Keane, P. J., Kerr, A. and New, P. B. 1970. Crown gall of stone fruit. II. Identification and nomenclature of agrobacterium isolates. Aust. J. Biol. Sci. 23:585-595. https://doi.org/10.1071/BI9700585
  22. Kim, C. H., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014a. Proteomic analysis of a global regulator GacS sensor kinase in the rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30:220-227. https://doi.org/10.5423/PPJ.NT.02.2014.0012
  23. Kim, J. S., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014b. The sensor kinase GacS negatively regulates flagellar formation and motility in a biocontrol bacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30:215-219. https://doi.org/10.5423/PPJ.NT.11.2013.0109
  24. Kong, H. G., Choi, K. H., Heo, K. R., Lee, K. Y., Lee, H. J., Moon, B. J. and Lee, S. W. 2009. Generation of a constitutive green fluorescent protein expression construct to mark biocontrol bacteria using P43 promoter from Bacillus subtilis. Plant Pathol. J. 25:136-141. https://doi.org/10.5423/PPJ.2009.25.2.136
  25. Kong, H. G., Lee, H. J., Bae, J. Y., Kim, N. H., Moon, B. J. and Lee, S. W. 2010. Spatial and temporal distribution of a biocontrol bacterium Bacillus licheniformis N1 on the strawberry plants. Plant Pathol. J. 26:238-244. https://doi.org/10.5423/PPJ.2010.26.3.238
  26. Lee, J. P., Lee, S. W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Cont. 37:329-337. https://doi.org/10.1016/j.biocontrol.2006.01.001
  27. Liu, X., Germaine, K. J., Ryan, D. and Dowling, D. N. 2010. Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls. Sensors 2:1377-1398.
  28. Matveeva, T. V. and Lutova, L. A. 2014. Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci. 5:326.
  29. Metzker, M. L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11:31-46. https://doi.org/10.1038/nrg2626
  30. Miller, W. G. and Lindow, S. E. 1997. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149-153. https://doi.org/10.1016/S0378-1119(97)00051-6
  31. Morales, D. K., Jacobs, N. J., Rajamani, S., Krishnamurthy, M., Cubillos-Ruiz, J. R. and Hogan, D. A. 2010. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol. Microbiol. 78:1379-1392. https://doi.org/10.1111/j.1365-2958.2010.07414.x
  32. Muhling, M., Woolven-Allen, J., Colin Murrell, J. and Joint, I. 2008. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2:379-392. https://doi.org/10.1038/ismej.2007.97
  33. Oh, E. T., So, J. S., Kim, B. H., Kim, J. S. and Koh, S. C. 2004. Green fluorescent protein as a marker for monitoring a pentachlorophenol degrader Sphingomonas chlorophenolica ATCC39723. J. Microbiol. 42:243-247.
  34. Osborn, A. M., Moore, E. R. and Timmis, K. N. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:39-50. https://doi.org/10.1046/j.1462-2920.2000.00081.x
  35. Ozyilmaz, U. and Benlioglu, K. 2013. Enhanced biological control of phytophthora blight of pepper by biosurfactant-producing Pseudomonas. Plant Pathol. J. 29:418-426. https://doi.org/10.5423/PPJ.OA.11.2012.0176
  36. Prieto, M. A., Hler, B. B., Jung, K. N. and Witholt, B. 1999. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J. Bacteriol. 181:858-868.
  37. Rashid, M. H. and Kornberg, A. 2000. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97:4885-4890. https://doi.org/10.1073/pnas.060030097
  38. R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  39. Reasoner, D. J., Blannon, J. C. and Geldreich. 1979. Rapid seven-hour fecal coliform test. Appl. Environ. Microbiol. 38:229-236.
  40. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J. and Goodman, R. M. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microoraganisms. Appl. Environ. Microbiol. 66:2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  41. Sambrook, J., Fritschi, E. F. and Maniatis, T. 1989. "Molecular cloning: a laboratory manual." Cold Spring Harbor Laboratory Press, Cold spring Harbor, New York.
  42. Sang, M. K., Shrestha, A., Kim, D. Y., Park, K., Park, C. H. and Kim, K. D. 2013. Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29:154-167. https://doi.org/10.5423/PPJ.OA.07.2012.0104
  43. Schisler, D., Slininger, P., Behle, R. and Jackson, M. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
  44. Scala, D. J. and Kerkhof, L. J. 2000. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 66:1980-1986. https://doi.org/10.1128/AEM.66.5.1980-1986.2000
  45. Sokol, H., Lepage, P., Seksik, P., Dore, J. and Marteau, P. 2006. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. J. Clin. Microbiol. 44:3172-3177. https://doi.org/10.1128/JCM.02600-05
  46. Thomas-Oates. and Leendert, C. van Loon. 2002. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie van Leeuwenhoek 81:617-624. https://doi.org/10.1023/A:1020526126283
  47. Tiedje, J. M., Asuming-Brempong, S., Nusslein, K., Marsh, T. L. and Flynn, S. J. 1999. Opening the black box of soil microbial diversity. Appl. Soil Ecology 13:109-122. https://doi.org/10.1016/S0929-1393(99)00026-8
  48. Wang, P. Z. and Doi, R. H. 1984. Overlapping promoters transcribed by Bacillus subtilis sigma 55 and sigma 37 RNA polymerase holoenzymes during growth and stationary phase. J. Biol. Chem. 259:8619-8625.
  49. Wang, Y., Xu, Z., Zhu, P., Liu, Y., Zhang, Z., Mastuda, Y., Toyoda, H. and Xu, L. 2010. Postharvest biological control of melon pathogens using Bacillus subtilis EXWB1. J. Plant Pathol. 92:645-652.
  50. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250-256. https://doi.org/10.1094/PHYTO-97-2-0250
  51. Whipps, J. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  52. White, T. J., Bruns, T. D., Lee, S. and Taylor, J. 1990. Analysis of phylogenetic relationship by amplification and direct sequencing of ribosomal RNA genes, In: PCR protocol: a guide to method and applications, eds. by M. A. Innis, D. H. Gelfond, J. J. Sainsky, and T. J. White, p. 315-322. Academic Press, New York, N.Y.
  53. Zhang, X. Z., Cui, Z. L., Hong, Q. and Li, S. P. 2005. High-level expression and selection of methyl parathion hydrolase in Bacillus subtilis WB800. Appl. Environ. Microbiol. 71:4101-4103. https://doi.org/10.1128/AEM.71.7.4101-4103.2005

Cited by

  1. Rhizosphere Microbiota and Microbiome of Medicinal Plants: From Molecular Biology to Omics Approaches vol.9, pp.3, 2017, https://doi.org/10.1016/S1674-6384(17)60097-2
  2. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition vol.112, 2017, https://doi.org/10.1016/j.biocontrol.2017.05.014
  3. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable vol.20, pp.1, 2018, https://doi.org/10.15446/rev.colomb.biote.v20n1.73707