• Title/Summary/Keyword: rhEGF

Search Result 43, Processing Time 0.025 seconds

Multivesicular Liposomes for Oral Delivery of Recombinant Human Epidermal Growth Factor

  • Li Hong;An Jun Hee;Park Jeong-Sook;Han Kun
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.988-994
    • /
    • 2005
  • The purpose of the present study was to prepare multivesicular liposomes with a high drug loading capacity and to investigate its potential applicability in the oral delivery of a peptide, human epidermal growth factor (rhEGF). The multivesicular liposomes containing rhEGF was prepared by a two-step water-in-oil-in-water double emulsification process. The loading efficiency was increased as rhEGF concentration increased from 1 to 5mg/mL, reaching approximately $60\%$ at 5 mg/mL. Approximately $47\%$ and $35\%$ of rhEGF was released from the multivesicular liposomes within 6 h in simulated intra-gastric fluid (pH 1.2) and intra-intestinal fluid (pH 7.4), respectively. rhEGF-loaded multivesicular liposomes markedly suppressed the enzymatic degradation of the peptide in an incubation with the Caco-2 cell homogenate. However, the transport of rhEGF from the multivesicular liposomes to the basolateral side of Caco­2 cells was two times lower than that of the rhEGF in aqueous solution. The gastric ulcer healing effect of rhEGF-loaded multivesicular liposomes was significantly enhanced compared with that of rhEGF in aqueous solution; the healing effect of the liposomes was comparable to that of the cimetidine in rats. Collectively, these results indicate that rhEGF-loaded multivesicular liposomes may be used as a new strategy for the development of an oral delivery system in the treatment of peptic ulcer diseases.

Buccal Mucosal Ulcer Healing Effect of rhEGF/Eudispert hv Hydrogel

  • Park, Jeong-Sook;Yoon, Joon-Il;Li, Hong;Moon, Dong-Cheul;Han, Kun
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.659-665
    • /
    • 2003
  • We have studied the effect of rhEGF on the buccal mucosal ulcer healing. rhEGF was rapidly degraded upon incubation with the hamster buccal mucosal homogenates; The degradation of rhEGF was significantly inhibited by sodium lauryl sulfate (SLS). Eudispert hv hydrogel and Polycarbophil 974P hydrogel were prepared for rhEGF delivery and their mucoadhesiveness was measured by the $Instron^R$ method. The mucoadhesive force of Eudispert hv was significantly greater than that of Polycarbophil 974P. Moreover, rhEGF in Eudispert hv hydrogel remained stable for about 2 months. To evaluate the ulcer healing effect of rhEGF, the buccal mucosal ulcer was induced in golden hamsters using acetic acid. At 24 h after administration of rhEGF/Eudispert hv hydrogel, the ulcerous area was decreased compared with rhEGF solution and, as a result, the curative ratio was $36.8\pm5.68$%. By the addition of SLS (0.5%) to Eudispert hv hydrogel, the curative ratio increased 1.5 times. The mechanism of the action was probably due to a combination of protection of the drug against proteases present in mucosa and prolongation of the release of rhEGF from the formulation at the site of action.

Oral Bioadhesive Gels of Recombinant Human Epidermal Growth Factor(rhEGF) for the Healing of Gastric Ulcers (재조합 상피세포성장인자를 함유한 경구 점착성 겔제의 위궤양 치유효과)

  • Han, Kun;Lee, Su-Jin;Kim, Jae-Hwan;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 1998
  • The objective of this study was to develop effective oral formulations of rhEGF for gastric ulcer healing using polycarbophil. hydroxypropylcellulose(HPC) and sucralfate as its bioadhesive bases. Cytoprotective effects of rhEGF, cell proliferation and differentiation. on the ulcers induced by ethanol or acetic acid in rats were studied. rhEGF release from HPC formulation was much faster than that from polycarbophil formulation. HPC formulation combined with small amount of sucralfate showed much slower release of rhEGF than only HPC base only. rhEGF preparations with bioadhesive polymers showed better effects on the healing of gastric ulcers than EGF solution when administered orally. When rhEGF preparations were administered at once and the animals were under starvation, polycarbophil formulation showed better effect on gastric ulcers than HPC formulation. Otherwise, when rhEGF preparations were given more than three times and the rats were fed normally, HPC formulation showed good healing efficacy of ulcers compared to polycarbophil formulation. rhEGF showed dose-dependent effect on the healing of both chronic and acute ulcers.

  • PDF

Effect of Protease Inhibitors on Degradation of Recombinant Human Epidermal Growth Factor in Skin Tissue

  • Ryou, Hae-Won;Lee, Jang-Won;Kyung, Kyung-Ae;Park, Eun-Seok;Chi, Sang-Cheol
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.34-38
    • /
    • 1997
  • Recombinant human epidermal growth factor (rhEGF), a polypeptide of 53 amino acid residues, is subject to degradation by numerous enzymes, especially proteases, when it is applied on the skin for the treatment of open wound. Amastatin, aprotinin, bestatin, EDTA, EGTA, gabexate, gentamicin, leupeptin, and TPCK were investigated for the possible protease inhibitors, which may use to protect rhEGF from degradation by the enzymes in the skin. Skin homogenates containing protease inhibitors and rhEGF were incubated at $37^{\circ}C$ for 30 minutes. After the reaction was stopped with trifluoroacetic acid, the amount of rhEGF remaining in the sample was determined with an HPLC method. The percentages of rhEGF degraded, at the skin/PBS ratio of 0.25, in the mouse, rat, and human skin homogenate were 85%, 70%, and 46%, respectively. The degree of degradation of rhEGF in the cytosolic fraction was higher than that in the membrane fraction and these enzyme reactions were completed in 30 minutes. Bestatin, EGTA, and TPCK showed significant inhibitory effects on the degradation of rhEGF in the two fractions (p<0.05), while the other protease inhibitors had no significant inhibitory effects or, even resulted in deleterious effects. Therefore, the formulation containing one or several inhibitors among these effective inhibitors would be a promising topical preparation of rhEGF for the treatment of open wound.

  • PDF

Effects of Recombinant Human Epidermal Growth Factor on the Proliferationand Radiation Survival of Human Fibroblast Cell Lines in Vitro (재조합 표피성장인자가 방사선이 조사된 섬유아세포 증식에 미치는 영향)

  • Kim, Hyun-Sook;Kang, Ki-Mun;Lee, Sang-Wook;Na, Jae-Boem;Chai, Gyu-Young
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.179-184
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. $\underline{Materials\;and\;Methods}$: Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. $\underline{Results}$: Number of fibroblast was significantly more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. $\underline{Conclusion}$: rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing.

Efficient Use of Lactose for Production of the Soluble Recombinant Human Epidermal Growth Factor in Escherichia coli. (대장균에서 lactose를 이용한 수용성 재조합 인간 상피 세포 성장 인자의 생산)

  • 박세철;권태종;고인영;유광현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 1998
  • Recombinant human epidermal growth factor (rhEGF) was produced by E. coli BL2l (DE3) harboring a plasmid pYHB101. The production of rhEGF was 44.5 mg/L when the E. coli BL2l (pYHB101) was cultured at 27$^{\circ}C$ for 48 hr in the modified MBL medium containing 10 $\mu\textrm{g}$/L glucose with 10 $\mu\textrm{m}$ IPTG/lactose induction at 2 hr after inoculation. It was shown that lactose is able to induce the rhEGF expression of E. coli BL2l (pYHB101) with the same efficiency as IPTG. In the batch culture system, when induced with 10 $\mu\textrm{m}$ lactose, E. coli BL2l (pYHB101) produced maximum 45 mg/L of the rhEGF at 28 hr culture in the modified MBL medium containing 10 g/L glucose. In the semi-fed batch culture system, the volumetric yield was 160 mg/L when the culture was added with 0.5% (w/v) lactose and 0.25% (w/v) yeast extract in the late logarithmic phase and 94.3% of rhEGF was secreted as soluble form. However, when the culture was added with them in the early logarithmic phase, the volumetric yield was 120 mg/L and 20.9% of rhEGF was found in cytoplasmic insoluble aggregates. It was found that the addition time of lactose was important for production of soluble rhEGF from E. coli BL21 (pYHB101).

  • PDF

Effects of Recombinant Human Epidermal Growth Factor (rhEGF) on Experimental Radiation-Induced Oral Mucositis in Rats (Rat의 방사선 조사성 구내염에 대한 Recombinant Human Epidermal Growth Factor (rhEGF)의 효과)

  • Jung Kwon-Il;Kim Sun-Hee;Moon Soo-Young;Kim Yeon-Wha;Hong Joon-Pio;Kim Hyun-Sook;Lee Sang-Wook
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.67-76
    • /
    • 2006
  • Purpose: Oral mucositis is a common toxicity of radiation or chemotherapy, which is used a treatment for head and neck cancer. We investigated effects of recombinant human epidermal growth factor (rhEGF) on radiation-induced oral mucositis in rat model. Materials and Methods: Spraque-Dawley rats (7 per group) exposed to a single dose of 25 Gy (day 0) on their head, except for one group, were randomly divided into un-treated, vehicle-treated, and two rhEGF-treated groups. Rats were topically applied with rhEGF (15 or $30{\mu}g/oral$ cavity/day) or vehicle to their oral mucosa. Survival rate of rats, weight changes, and food intakes were examined from day 0 to 18 after radiation. Histology study was performed from oral mucosa of rats at day 7 and 18 after radiation. Results: rhEGF-treated groups (15 or $30{\mu}g/oral$) showed all survival rate 33%, whereas un-treated and vehicle-treated groups showed all survival rate 0% at the end of experiment. rhEGF-treated groups statistically had less weight loss compared to vehicle-treated group from day 2 to 7 after radiation. Food intake of rats with rhEGF treatment turned to increase at day 14 after radiation. At 7 day after radiation, un-treated and vehicle-treated groups showed severe pseudomembraneous or ulcerative oral mucositis. On the other hand, rhEGF-treated groups had no more than cellular swelling and degeneration of epidermal cells in oral mucosa of rats. Conclusion: These results suggest that rhEGF has significantly positive effects on radiation-induced oral mucositis in rats. rhEGF display a therapeutic potential on a clinical level.

The Effect of Recombinant Human Epidermal Growth Factor on Cisplatin and Radiotherapy Induced Oral Mucositis in Mice (마우스에서 Cisplatin과 방사선조사로 유발된 구내염에 대한 재조합 표피성장인자의 효과)

  • Na, Jae-Boem;Kim, Hye-Jung;Chai, Gyu-Young;Lee, Sang-Wook;Lee, Kang-Kyoo;Chang, Ki-Churl;Choi, Byung-Ock;Jang, Hong-Seok;Jeong, Bea-Keon;Kang, Ki-Mun
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • Purpose: To study the effect of recombinant human epidermal growth factor (rhEGF) on oral mucositis induced by cisplatin and radiotherapy in a mouse model. Materials and Methods: Twenty-four ICR mice were divided into three groups-the normal control group, the no rhEGF group (treatment with cisplatin and radiation) and the rhEGF group (treatment with cisplatin, radiation and rhEGF). A model of mucositis induced by cisplatin and radiotherapy was established by injecting mice with cisplatin (10 mg/kg) on day 1 and with radiation exposure (5 Gy/day) to the head and neck on days $1{\sim}5$. rhEGF was administered subcutaneously on days -1 to 0 (1 mg/kg/day) and on days 3 to 5 (1 mg/kg/day). Evaluation included body weight, oral intake, and histology. Results: For the comparison of the change of body weight between the rhEGF group and the no rhEGF group, a statistically significant difference was observed in the rhEGF group for the 5 days after day 3 of. the experiment. The rhEGF group and no rhEGF group had reduced food intake until day 5 of the experiment, and then the mice demonstrated increased food intake after day 13 of the of experiment. When the histological examination was conducted on day 7 after treatment with cisplatin and radiation, the rhEGF group showed a focal cellular reaction in the epidermal layer of the mucosa, while the no rhEGF group did not show inflammation of the oral mucosa. Conclusion: These findings suggest that rhEGF has a potential to reduce the oral mucositis burden in mice after treatment with cisplatin and radiation. The optimal dose, number and timing of the administration of rhEGF require further investigation.

Escherichia coli에서 발현된 재조합 인간 상피세포 증식인자의 정제 및 특성

  • 박세철;유광현
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.478-484
    • /
    • 1996
  • Recombinant human epidermal growth factor (rhEGF) was produced by E. coli BL21 harboring a plasmid pYHB101. The maximum production was 68.7 mg/l when the E. coli strain was cultured at 25$\circ$C for 48 hours in the modified MBL medium containing 10 g/l glucose with 1 mM IPTG induction at 2 hours after inoculation. The rhEGF was purified upto 267 folds by Amberlite XAD- 7 chromatography, ultrafiltration, and DEAE Sepharose fast flow ion exchange chromatography with an overall yield of 66.6%. The purified rhEGF was further separated into two fractions by HPLC. The N-terminal amino acid sequence of the second fraction was Asn-Ser-Asp-Ser-Glu-Cys-Pro-Leu-Ser-His. The effect of rhEGF on the DNA synthesis was examined using in vitro biological assay based on the incorporation of 5'-bromo-2'- deoxy-uridine (BrdU). The purified rhEGF shows no difference with natural human epidermal growth factor (nhEGF) in N-terminal amino acids residues and biological activity. From the results, we concluded that rhEGF produced from E. coli harboring the plasmid pYHB101 was apparently the same as nhEGF.

  • PDF

Recombinant Human Epidermal Growth Factor (rhEGF)-loaded Solid Lipid Nanoparticles: Fabrication and Their Skin Accumulation Properties for Topical rhEGF Delivery

  • Hwang, Hee-Jin;Han, Sunhui;Jeon, Sangok;Seo, Joeun;Oh, Dongho;Cho, Seong-Wan;Choi, Young Wook;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2290-2294
    • /
    • 2014
  • For the present study, rhEGF was encapsulated into solid lipid nanoparticles (SLNs). The SLNs were prepared by the $W_1/O/W_2$ double emulsification method combined with the high pressure homogenization method and the physical properties such as particle size, zeta-potential and encapsulation efficiency were measured. The overall particle morphology of SLNs was investigated using a transmission electron microscopy (TEM). The percutaneous skin permeation and accumulation property of rhEGF was evaluated using Franz diffusion cell system along with confocal laser scanning microscopy (CLSM). The mean particle size of rhEGF-loaded SLNs was $104.00{\pm}3.99nm$ and the zeta-potential value was in the range of -$36.99{\pm}0.54mV$, providing a good colloidal stability. The TEM image revealed a spherical shape of SLNs about 100 nm and the encapsulation efficiency was $18.47{\pm}0.22%$. The skin accumulation of rhEGF was enhanced by SLNs. CLSM image analysis provided that the rhEGF rat skin accumulation is facilitated by an entry of SLNs through the pores of skin.