• Title/Summary/Keyword: reverse osmosis modules

Search Result 21, Processing Time 0.021 seconds

Advanced Treatment for Reuse of Oil Refinery Process Wastewater using UF/RO Processes (UF/RO 공정을 이용한 정유공장 방류수의 재활용을 위한 고도처리)

  • 이광현
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.220-229
    • /
    • 2000
  • Deionized water and wastewater flux were discussed using module set 1-7 composed of ultrafiltration hollow fiber type modules and reverse osmosis spiral wound type modules. The separation characteristics of ultrafiltration and reverse osmosis membranes were discussed with the variation of applied pressure and temperature. Turbidity and SS were removed effectively from ultrafiltration mem¬brane, and removal efficiency of COD, T-N, and TDS using reverse osmosis membrane was very efficient. Permeate flux increased linearly with the increase of applied pressures and temperature. It was shown that ultrafiltration and reverse osmosis membranes were suitable Lo the advanced treatment and reuse of oil refinery process effluent.

  • PDF

Scaling predictions in seawater reverse osmosis desalination

  • Hchaichi, Houda;Siwar, Saanoun;Elfil, Hamza;Hannachi, Ahmed
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.221-233
    • /
    • 2014
  • Simulations were conducted to predict supersaturation along Reverse Osmosis (RO) modules for seawater desalination. The modeling approach is based on the use of conservation principles and chemical equilibria equations along RO modules. Full Pitzer ion interactive forces model for concentrated solutions was implement to calculate activity coefficients. An average rejection rate for all ionic species was considered. Supersaturation has been used to assess scaling. Supersaturations with respect to all calcium carbonate forms and calcium sulfate were calculated up to 50% recovery rate in seawater RO desalination. The results for four different seawater qualities are shown. The predictions were in a good agreement with the experimental results.

Application of Reverse Osmosis Plate and Frame Type for Separation and Concentration Heavy Metal[Cu(II), Zn(II)] (중금속[Cu(II), Zn(II)]의 분리 및 농축을 위한 역삼투 판틀형 모듈의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek;Kim, Jong-Pal
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • This study was focused on experiment for the separation and concentration process of Cu(II), Zn(II) solution with the variation of applied pressure and concentration using reverse osmosis plate and frame modules. Rejection coefficient and degree of concentration for Cu(II) component using single and multi-stage reverse osmosis process were showed 96.3~97.8%, 0.044~0.191(in single-stage), 96.3~98.4%, 0.400~2.264(in multi-stage) within the range of experimental condition, respectively. Those of Zn(II) were 93.3~97.1%, 0.019~0.395(in single-stage), 96.3~98.2%, 0.365~1.454(in multi-stage), respectively. Degree of concentration of multi-stage were higher than those of single-stage. Heavy metal[Cu(II), Zn(II)] separation was very efficient in using reverse osmosis plate and frame type modules. Separation efficiency for a mixed solution Cu(II) and Zn(II) was higher than those of each one of Cu(II) and Zn(II).

Recovery of Useful Components from Rice-washing Water Using Membranes (분리막을 이용한 쌀뜨물내 유효성분의 회수)

  • 정건용;박성희
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.165-170
    • /
    • 2002
  • Membrane process was investigated to recover useful components, such as protein from rice-washing water generated in the production of the washed-rice. The filtration experiments were carried out using not only a dead-end Amicon cell to determine suitable membranes but also a hollow fiber ultrafiltration, spiral wound nanofiltration and reverse osmosis modules for home water purification. Ultrafiltration module(molecular weight cut-off : 10,000 dalton) was not suitable for recovery of useful components or protein in the rice-washing water, but nanofiltration and reverse osmosis modules showed a good performance. in the case of 250% concentration of the rice-washing water contained about 9% protein the proteins in concentrates of nanofiltration and reverse osmosis were 18% and 22%, which were about 2 and 2.4 times higher protein concentrations than those of feed, respectively.

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Municipal wastewater reclamation for non-potable use using hollow- fiber membranes

  • Waghmare, Sujata;Masid, Smita;Rao, A. Prakash;Roy, Paramita;Reddy, A.V.R.;Nandy, T.;Rao, N.N.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Approximately 80% of water used in urban areas reappears as municipal wastewater (MWW). Reclamation of MWW is an attractive proposition under the present scenario of water stressed cities in India. In this paper, we attempted to reclaim MWW using lab-scale hollow- fiber (HF) membrane modules for possible reuse in non-potable applications. Experiments were conducted to evaluate the efficiency of virgin HF ($M_1$) and modified HF ($M_2$) modules. The $M_2$ module consists of HF modified with a skin layer formed through interfacial polymerization of m-phenylenediamine with trimesoyl chloride (MPD-TMC). The molecular weight cut-off (MWCO) of $M_1$ was 44000 g/mol and that of $M_2$ 10000 -14000 g/mol on the basis of rejection of polyethylene glycol. The combination of $M_1$ and $M_2$ modules was able to reduce concentrations of most of the pollutants in sewage and improved the treated water quality to the acceptable limits for non potable reuse applications. It is found that about 98-99% of the initial flux is recovered by the backwashing process, which was approximately two times in a month when operated continuously.

Ions Removal of Contaminated Water with Radioactive Ions by Reverse Osmosis Membrane Process (방사성이온으로 오염된 물의 역삼투막공정을 이용한 이온제거)

  • Shin, Do Hyoung;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.401-406
    • /
    • 2016
  • In this study, we have investigated the removal of the low level radioactive ions of Cs and I in water by the reverse osmosis (RO) process. The two RO modules produced in domestic region and the waste RO module after the cleaning process were selected. Then we compared removal performance of both Cs and I. The experiments are conducted by varying the concentration of feed, the pressure. As a results, it was confirmed that all three modules are higher I decontamination factor than Cs. And particularly, for the cleaned RO module, its decontamination factor of I was 1140. Since the results at low pressure condition were better than that at high pressure conditions, the use of the direct installation of RO modules on the tap water might be possible. In addition, it was confirmed that the waste RO module after cleaning process using EDTA, SBS and NaOH, increased the decontamination performance better than before cleaning, in particular, the recovery ratio after cleaning was 6.3% higher.

Removal of low concentration organic matter by reverse osmosis membranes in ultrapure water production process (초순수 제조 공정에서 역삼투 막의 저농도 유기물 제거)

  • Lee, Hongju;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.391-396
    • /
    • 2014
  • Ultrapure water (UPW) is water containing nothing but water molecule ($H_2O$). The use of UPW is increasing in many industries such as the thermal and nuclear power plants, petrochemical plants, and semiconductor manufacturers. In order to produce UPW, several unit processes such as ion exchange, reverse osmosis (RO), ultraviolet (UV) oxidation should be efficiently arranged. In particular, RO process should remove not only ions but also low molecular weight (LMW) organic matters in UPW production system. But, the LMW organic matter removal data of RO membranes provided by manufacturers does not seem to be reasonable because they tested the removal in high concentration conditions like 1,000 ppm of isopropyl alcohol (IPA, MW=60.1). In this study, bench-scale experiments were carried out using 4-inches RO modules. IPA was used as a model LMW organic matter with low concentration conditions less than 1 ppm as total organic carbon (TOC). As a result, the IPA removal data by manufacturers turned out to be trustable because the effect of feed concentration on the IPA removal was negligble while the IPA removal efficiency became higher at higher permeate flux.

Treatment and Reuse of Acrylic Wastewater using Membrane Separation System

  • Lee, Kwanghyun
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.117-120
    • /
    • 2004
  • The separation characteristics were investigated with the variations of pressure and temperature using ultrafiltration and reverse osmosis membrane module sets composed of different membrane types and materials. TDS, T-N and COD removal efficiencies were not affected and low with the change of temperature and pressure in case of using UF modules contained in module set 1, 2, 3. TDS, T-N and COD removal efficiencies were very high in RO modules. The final water quality of acrylic wastewater was satisfied within the discharge limit value of plant wastewater. It was known that membrane module sets could be used for the reuse of wastewater.

  • PDF

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic폐수의 전처리 및 UF/RO공저의 적용)

  • 이광현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.05a
    • /
    • pp.135-138
    • /
    • 2001
  • Acrylic wastewater flux was discussed using modules of ultrafiltration hollow fiber and reverse osmosis spiral wound. The optimum backflushing times of membranes were decided and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 12hrs. Separation processes with ultrafiltration and reverse osmosis membranes were not suitable to remove COD and TDS. The improvement of pretreatment processes was needed.

  • PDF