• Title/Summary/Keyword: reverse mutation assay

Search Result 59, Processing Time 0.025 seconds

Genotoxicity Study of GST Extract (GST 추출물의 유전독성평가)

  • Lee, Chul Wha;Han, Jong Min;Lee, Mi Young;Jung, In Chul;Jin, Mirim;Kim, Seung Hyung;Park, Yang Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.6
    • /
    • pp.621-629
    • /
    • 2014
  • This study aimed to evaluate the genotoxicity of GST (Gamisasangja-tang). For examining genotoxicity, we carried out bacterial reverse mutation assay, chromosome aberration assay, micronucleus induction test according to OECD guidelines. Bacterial reverse mutation assay: In GST treating group, regardless of existence S9 mix, revertant colonies counts appeared to be less than twice of negative control group and dose dependent increase. In positive control group, revertant colonies counts were shown to be more than twice of negative control croup. Chromosome aberration assay: All cell line showed repetition rate of abnormal chromosome aberration less than 5%, regardless of treating time, existence of S9 mix, and no significant change ($p{\succeq}0.05$) compared with negative control group. Micronucleus induction test: Micronucleated polychromatic erythrocytes (MNPCE) repetition rate of Polychromatic erythrocytes (PCE) showed no significant changes compared with negative control group ($p{\succeq}0.05$). PCE portion of total erythrocytes also showed no significant changes ($p{\succeq}0.05$). Our results showed that GST didn't induce any genotoxicity.

Mutagenicities of Workplace Chemicals in Korea

  • Maeng, Seung-Hee;Lee, Jong-Yun;Lee, Yong-Mook;Chung, Hai-Won;Yu, Il-Je
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.57-62
    • /
    • 2001
  • Bacterial reverse mutation assays were performed for 20 workplace chemicals in Korea, which were selected among workplace chemicals under the Korea Industrial Safety and Health Act (KISHA) with the occupational exposure levels (OELs). The assays were carried out by using the pre-incubation method ($37 ^{\circ}C$, 20 min) with and without metabolic activation using Salmonella typhimurium TA98, TA100, TA1535, TA1537 and E. coli WP2uvrA. The chemicals were tested at 5 concentrations both in the preliminary and the second assays. Despite the cell toxicities, there were no chemical-induced mutagenicities with or without metabolic activation in any of 20 chemicals.

  • PDF

Genotoxicicological Safety Estimate for the Rhus-II (옻나무 추출액(Rhus-II)의 안전성에 관한 유전독성학적 평가)

  • Choi Changsun;Han Dong Un
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.1
    • /
    • pp.18-21
    • /
    • 2005
  • These observations were performed to investigate the safety of the natural herbs (Rhus-II) in respect of genotoxicity. This substance was examined in two in-vitro tests: (1) Salmonella typhimurium reversion assay (Ames test) in strain TA 98, TA 100, TA 1535 and TA 1537, (2) in vitro chromosome aberration test in cultured Chinese hamster ovary (CHO) cells. In the reverse mutation test, Rhus-II did not induced mutagenicity in Salmonella typhimurium reversion assay(Ames test) with or without metabolic activation. In the chromosome aberration assay using CHO cells, there was no increased incidence of structural and numerical aberrations with or without metabolic activation. These results indicated that, the Rhus-II had no genotoxicity.

Genotoxicity Study of Litsea japonica Fruit Flesh Extract (까마귀쪽나무열매추출물의 유전독성 평가)

  • Yun, Ji-Hyun;Park, In-Jae;Park, Sung-Hwan;Choi, Goo-Hee;Kim, Hyun-Jung;Cho, Ju-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • This study aimed to evaluate the genotoxicity of Litsea japonica fruit-hexane extract (LJF-HE). In order to examine the genotoxicity, we carried out bacterial reverse mutation assay, chromosome aberration assay, and a micronucleus induction (MN) test according to the OECD and the Korea Ministry of Food and Drug Safety (MFDS) toxicity test guidelines. In the bacterial reverse mutation assay, no significant increase in revertant colonies, nor bacterial toxicity, was observed in the LJF-HE treatment group, regardless of the absence or presence of metabolic activation by the S9 mixture. However, in the positive control group, revertant colony counts were shown to be more than twice that of the negative control group. The chromosome aberration test showed that the repetition rate of abnormal chromosome aberration was less than 5%, regardless of the treatment time, and with or without the S9 mixture. No significant change was observed when (p < 0.05) compared with the negative control group. The micronucleated polychromatic erythrocytes (MNPCE) repetition rate of the polychromatic erythrocytes (PCE) showed no significant changes when compared with the negative control group (p < 0.05). The PCE portion of total erythrocytes also showed no significant changes (p < 0.05). These results showed that LJF-HE had no significant genotoxic effects.

Genotoxicity Study of Immature Green Persimmon Extract (풋감 주정 추출물의 유전독성 연구)

  • Ham, Young-Min;Yoon, Seon-A;Hyun, Ho Bong;Go, Boram;Jung, Yong-Hwan;Oh, Dae-Ju;Yoon, Weon-Jong
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.567-573
    • /
    • 2020
  • The persimmon is commonly cultivated in temperate regions of the world, including China, Korea, Japan, Brazil, Turkey, and Italy. In some Asian cultures, consumers are aware of the health claims related to the persimmon and its functional ingredients. The rich phytochemistry of the persimmon has opened new avenues of research on diet-based regimens designed to cure various ailments. This study was conducted to identify the genotoxicity of immature green persimmon (Diospyros kaki THUNB.) extract (DKA). The bacterial reverse mutation assay, the chromosomal aberration assay, and the mammalian micronucleus test were performed to determine the DKA genotoxicity. The result of the bacterial reverse mutation assay revealed that the DKA did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537 and Escherichia coli WP2uvrA with or without metabolic activation of S9 mixture. The oral administration of DKA also caused no significant increase in the number of micronucleated polychromatic erythrocytes or in the mean ratio of polychromatic to total erythrocytes. In addition, DKA did not cause a significant chromosome aberration on CHL cells in the presence or absence of S9 activation. In conclusion, DKA could be considered as a reliable and safe functional food since no toxicity was found under the condition of this study.

The First Report to Evaluate Safety of Cyanobacterium Leptolyngbya sp. KIOST-1 for Use as a Food Ingredient: Oral Acute Toxicity and Genotoxicity Study

  • Lee, Youngdeuk;Kim, Taeho;Lee, Won-Kyu;Ryu, Yong-Kyun;Kim, Ji Hyung;Jeong, Younsik;Park, Areumi;Lee, Yeon-Ji;Oh, Chulhong;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.290-297
    • /
    • 2021
  • Leptolyngbya sp. KIOST-1 (LK1) is a newly isolated cyanobacterium that shows no obvious cytotoxicity and contains high protein content for both human and animal diets. However, only limited information is available on its toxic effects. The purpose of this study was to validate the safety of LK1 powder. Following Organisation for Economic Co-operation and Development (OECD) guidelines, a single-dose oral toxicity test in Sprague Dawley rats was performed. Genotoxicity was assessed using a bacterial reverse mutation test with Salmonella typhimurium (strains TA98, TA100, TA1535, and TA1537) and Escherichia coli WP2 uvrA, an in vitro mammalian chromosome aberration test using Chinese hamster lung cells, and an in vivo mammalian erythrocyte micronucleus test using Hsd:ICR (CD-1) SPF mouse bone marrow. After LK1 administration (2,500 mg/kg), there were no LK1-related body weight changes or necropsy findings. The reverse mutation test showed no increased reverse mutation upon exposure to 5,000 ㎍/plate of the LK1 powder, the maximum tested amount. The chromosome aberration test and micronucleus assay demonstrated no chromosomal abnormalities and genotoxicity, respectively, in the presence of the LK1 powder. The absence of physiological findings and genetic abnormalities suggests that LK1 powder is appropriate as a candidate biomass to be used as a safe food ingredient.

Study on Mutagenicity of DehydroevodiamineㆍHCl(DHED) (치료제 DehydroevodiamineㆍHCl(DHED)의 변이원성 연구)

  • 성이숙;정성윤;정주연;채규영;진미령;최봉웅;장병모;김대경
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.208-212
    • /
    • 2002
  • Dehydroevodiamine HCl (DHED), which is a component separated from Evodia rutaecarpa Bentham, has novel anticholinesterase and antiamnesic activities in the scopolamine-induced amnesia model. Several studies suggest that DHED might be an effective drug for the Alzheimer's disease and the vascular type of dementia. In order to evaluate the mutagenic potential of DHED, Salmonella typhimurium reversion assay, chromosomal aberration test on Chinese hamster lung cells, in vivo micronucleus assay using mouse bone marrow cells, and comet assay were performed. DHED did not increase the number of revertant in the reverse mutation test using Salmonella typhimurium TA1535, TA1537, TA98, TA100. DHED HCl, at concentration of 5 and 10 $\mu\textrm{g}$/mι, increased the number of chromosome aberrated Chinese hamster lung cells with 5 and 10%, respectively. In mouse micronucleus test, no significant increase in the occurrence of micronucleated polychromatic erythrocyte was observed in ICR mice orally administered with DHED. DHED was tested for ability to induce genotoxic effect in L5178Y cells (mouse lymphoma cells) using the single cell gel electrophoresis assay (comet assay). In comet assay, tail moment did not increase in L5178Y cells treated with 10, 100, 300 $\mu$M DHED.

Genotoxicity on $21{\alpha}-and\;{\beta}-methylmelianodiol$, a Component of Poncirus trifoliata, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Lee, Seung-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • [ $21{\alpha}$ ]- and ${\beta}$-Methylmelianodiol were isolated as the inhibitor of IL-5 bioactivity from Poncirus tripoliata. To develope as an anti-septic drug, the genotoxicity of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ was subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of $21{\alpha}-methylmelianodiol$ was determined the concentration of $25.51\;{\mu}g/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. Also $21{\beta}-methylmelianodiol$ was determined the concentration of $24.15\;{\mu}g/mL\;and\;\;22.46\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, DNA damage was not observed both $21{\alpha}-methylmelianodiol\;and\;21{\beta}-methylmelianodiol$ in mouse lymphoma cell line. Also, the mutant frequencies in the treated cultures were similar to the vehicle controls, and none of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ with and without S-9 doses induced a mutant frequency over. twice the background. It is suggests that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ are non-mutagenic in MOLY assay. The results of this battery of assays indicate that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ have no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$, as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen.

Mutagenecity Test of SDK (SDK시제품(가칭)에 대한 변이원성시험)

  • 정지윤;이원우;임종희;남정석;제정환;이광훈;강병철;이병희;박재학
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.211-216
    • /
    • 1998
  • In order to evaluate the mutagenic potential of SDK(skin decontamination kit) produced by Agency for Defense Development(ADD), were performed Salmonella typhimurium reversion assay, chromosomal aberration test on chinese hamster ovarian cells and in vivo micronucleus assay using mouse bone marrow cells according to the established regulation of Korean Food and Drug Administration. In the reverse mutation test using Salmonella typhimurium TA98, TA100, TA1535 and TA1537 did not in-crease the number of revertant at any of the concentration tested in this study. SDK did not increase the number of cells having structural or numerical chromosome aberration in cytogenetic test. In mouse micronucleus test, no significant increase in the occurrence oj micro nucleated polychromatic erythrocytes were observed in ICR male mice intraperitoneally administered with SDK. These results indicate that SDK has no mutagenic effects under these experimental conditions.

  • PDF

A Genotoxicological Safety Evaluation of Crude Antifungal Compounds Produced by Lactobacillus Plantarum AF1 and Lactobacillus Plantarum HD1 (Lactobacillus plantarum AF1와 Lactobacillus plantarum HD1이 생성한 조항균 물질의 유전학적 독성평가)

  • Chang, Hae-Choon;Koh, Sang-Bum;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.26 no.4
    • /
    • pp.633-645
    • /
    • 2015
  • This study investigates the genotoxicity of crude antifungal compounds produced by Lactobacillus plantarum AF1 (L.plantarum AF1) and Lactobacillus plantarum HD1 (L. plantarum HD1) isolated from kimchi. The genetic toxicity of crude antifungal compounds was evaluated in bacterial reverse mutation in Salmonella and Escherichia spp., chromosome aberrations in Chinese hamster lung cells, and micronucleous formations in mice. In bacterial reversion assays with Salmonella Typhimurium TA98, TA100, TA1535, TA1537, and WP2uvrA, crude antifungal compounds did not increase the number of revertant colonies in both the absence and presence of the 59 metabolic activation system. In the chromosome aberration test with Chinese hamster lung cells, crude antifungal compounds showed no increase in the frequency of chromosome aberrations in the short-period test with/without the S9 mix or in the continuos test. In the in vivo mouse micronucleus assay, crude antifungal compounds showed no increase in the frequency of polychromatic erythrocytes with micronuclei. The results show that crude antifungal compounds produced by L. plantarum AF1 and L. plantarum HD1 did not induce any genotoxicity.