• Title/Summary/Keyword: retaining walls

Search Result 344, Processing Time 0.021 seconds

A Study on the Behavior of the Retaining Walls with the Improved Top-Down Support System using the Building Structure (건축 구조체를 이용한 개량 역타공법 적용시 흙막이 벽체의 거동 연구)

  • Chun, Byung-Sik;Roh, Bae-Young;Do, Jong-Nam;Rew, Woo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1666-1672
    • /
    • 2008
  • In this study, it collected and analyzed a construction case of the improved top-down support system application field on a case by case retaining wall method. The behavior of horizontal displacement was analyzed according to retaining wall type after reviewing a design stage and estimated horizontal displacement under the construction. The study results showed that it is judged stable until excavation termination irrelevant to a retaining wall method at the improved top-down support system application. It is judged that the settlement of behind ground can minimize because the retaining wall head displacement also behave stably. It was compared the predicted horizontal displacement in design and the measured horizontal displacement acquired through a measurement by using Elasto-Plastic analysis program. The comparison results showed that a similar horizontal displacement was predicted within stability standard irrelevant to a retaining wall method. So, it is decided that the advanced prediction is reasonable by Elasto-Plastic analysis in design applied the improved top-down support system. In the case of the ground anchor method application under a same condition, it is decided that a horizontal displacement will more increase than the improved top-down support system is applied. If a section condition is same, it was decided that to apply top-down support system is more stable than that.

  • PDF

Lateral Earth Pressures Acting on Anchored Retention Walls for Underground Excavation (지하굴착시 앵커지지 흙막이벽에 작용하는 측방토압)

  • 홍원표;윤중만
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-78
    • /
    • 1995
  • Recently, in order to utilize more effectively underground space, deep excavations have been performed on building or subway construction in urban areas. In such excavations, anchors have been used to support the excavation retaining walls because the anchored excavation could provide wide working space for underground construction. The purpose of this paper is to establish empirical equations to be able to estimate the earth pressures acting on anchored excavation retention walls, based on the investigation of field measuring results, which were obtained from twenty seven building construction sites. The prestressed anchor force was measured by load cells which were attached to the anchor head, while the horizontal displacement of excavation walls were measured by inclinometers which were installed right'behind the retention walls. The lateral earth pressures acting on the anchored retention walls, which were estimated from both the measured anchor forces and the horizontal displacement of the walls, showed a trapezoidal distribution. There was some difference between the measured earth pressures acting on the anchored retention walls and the empirical earth pressures given by several empirical equations. Thus, the lateral earth pressures acting on anchored retention walls would be estimated by these empirical equations with some modifications.

  • PDF

Development of a System Predicting Maximum Displacements of Earth Retaining Walls at Various Excavation Stages Using Artificial Neural Network (인공신경망을 이용한 굴착단계별 흙막이벽체의 최대변위 예측시스템 개발)

  • 김홍택;박성원;권영호;김진홍
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.83-97
    • /
    • 2000
  • In the present study, artificial neural network based on the multi-layer perceptron is used and an optimum model is chosen through the process of efficiency evaluation in order to develop a system predicting maximum displacements of the earth retaining walls at various excavation stages. By analyzing the measured field data collected at various urban excavation sites in Korea, factors influencing on the behaviors of the excavation wall are examined. Among the measured data collected, reliable data are further selected on the basis of the performance ratio and are used as a data base. Data-based measurements are also utilized for both teaming and verifying the artificial neural network model. The learning is carried out by using the back-propagation algorithm based on the steepest descent method. Finally, to verify a validity of the formulated artificial neural network system, both the magnitude and the occurring position of the maximum horizontal displacement are predicted and compared with measured data at real excavation sites not included in the teaming process.

  • PDF

A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test (동적원심모형실험을 이용한 지진 시 역T형 옹벽의 관성력 영향 분석 사례 연구)

  • Jo, Seong-Bae;Ha, Jeong-Gon;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • Mononobe-Okabe (M-O) theory is widely used for evaluating seismic earth pressure of retaining wall. It was originally developed for gravity walls, which have rigid behavior, retaining cohesionless backfill materials. However, it is used for cantilever retaining wall on the various foundation conditions. Considering only inertial force of the soil wedge as a dynamic force in the M-O method, inertial force of the wall does not take into account the effect on the dynamic earth pressure. This paper presents the theoretical background for the calculation of the dynamic earth pressure of retaining wall during earthquakes, and the current research trends are organized. Besides, the discrepancies between real seismic behavior and M-O method for inverted T-shape retaining wall with 5.4m height subjected to earthquake motions were evaluated using dynamic centrifuge test. From previous studies, it was found that application point, distribution of dynamic earth pressure and M-O method are needed to be re-examined. Test results show that real behavior of retaining wall during an earthquake has a different phase between dynamic earth pressure and inertial force of retaining wall. Moreover, when bending moments of retaining wall reach maximum values, the measured earth pressures are lower than static earth pressures and it is considered due to inertial effects of retaining wall.

A Behavior of Curve Section of Reinforced Retaining Wall by Model Test (모형실험을 통한 보강토 옹벽 곡선부 거동특성)

  • Ki, Jung Su;Rew, Woo Hyun;Kim, Sun Kon;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.249-257
    • /
    • 2012
  • The reinforced earth method is financially viable. Furthermore, it overcomes environmental limitations and is therefore employed in retaining walls, slopes, foundations, roads, embankments, and other structures. However, in some cases, reinforced retaining walls are not strong enough in the curved sections and can collapse. Such mishaps are believed to occur because of an unsatisfactory analysis of the curved sections of a reinforced retaining wall. Accordingly, with the aim of investigating the workability and structural safety of curved sections of various types, this study investigates the differences in the estimated horizontal displacements of curved sections of various types and subsequently uses this information to study and analyze preliminary data so that appropriate measures can be taken to resolve alignment issues. The results of an experiment reveal that when a load is applied to curved sections of both concave and convex types, the largest horizontal displacement occurs at the center of the section. In the concave form, the earth pressure force is directed inward, whereas in the convex form, this force is directed outward. As a result, the horizontal displacement in convex forms is larger than that in concave forms. Convex reinforced earth structures are subjected to earth pressures as well as lateral earth pressure, therefore horizontal displacements in convex curved sections is larger than that of concave curved sections.

Case Study on the Countermeasure Methods and Collapsed Sources of Segmental Retaining Wall Considering Site Conditions (시공환경을 고려한 블록식 보강토옹벽의 붕괴요인 분석 및 대책방안 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Kim, Ji-Sun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2005
  • The geosynthetic reinforced segmental retaining walls(SRW) are improved that the disadvantage of existed retaining wall and the workability in field. Recently, the segmental retaining wall is replacing the exited wall because it is quickly advanced to using by the block in-situ. The use, therefore, is increasing. But, the trends of the large scaled construction was developed that the problems likely to crack and collapse, those are caused of careless in design and construction of SRW not considering about various surrounding conditions. In this study, the cause analysis on destructed SRW was carried out that based on the datum of measured displacement of walls, rainfall features and ground sounding conditions. Also, the analysis of the global slope stability was carried out on collapsed section and non-collapsed section using critical equilibrium method. For the rational stability and analysis of slope including SRW structure, the site conditions including situations of topography, ground and histories of construction and collapse etc should be considered. The rational countermeasure methods for non-collapsed and collapsed areas may be sustained as much as possible current state.

  • PDF

Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation (가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발)

  • Lee, Dong-Gun;Yu, Jeong-Yeon;Choi, Ji-Yeol;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.13-24
    • /
    • 2023
  • To investigate the stability of temporary retaining walls during excavation, it is essential to develop reverse analysis technologies capable of precisely evaluating the properties of the ground and a learning model that can assess stability by analyzing real-time data. In this study, we targeted excavation sites where the C.I.P method was applied. We developed a Deep Neural Network (DNN) model capable of evaluating the stability of the retaining wall, and estimated the physical properties of the ground being excavated using a Differential Evolution Algorithm. We performed reverse analysis on a model composed of a two-layer ground for the applicability analysis of the Differential Evolution Algorithm. The results from this analysis allowed us to predict the properties of the ground, such as the elastic modulus, cohesion, and internal friction angle, with an accuracy of 97%. We analyzed 30,000 cases to construct the training data for the DNN model. We proposed stability evaluation grades for each assessment factor, including anchor axial force, uneven subsidence, wall displacement, and structural stability of the wall, and trained the data based on these factors. The application analysis of the trained DNN model showed that the model could predict the stability of the retaining wall with an average accuracy of over 94%, considering factors such as the axial force of the anchor, uneven subsidence, displacement of the wall, and structural stability of the wall.

A Study on the Stability of Slopes Reinforced with Panel-Type Retaining Walls (대절토부 사면의 패널식 옹벽보강에 따른 안정성 검토)

  • Dong-wook Choi;Jun-o Park;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • Various innovative technologies and methods are being applied to ensure the stability of steep rock slopes. However, there are design limitations concerning site ground conditions, leading to discrepancies between the designed and actual ground conditions during construction. In the case of the retaining wall in Yeosu, where the study area is located, although the construction of a 5-stage retaining wall is planned, at the current completion of the second stage, cracks on the upper part of the wall, settlement in the front of the wall, and seepage have been observed. After the completion of stages one and two, issues regarding cracks and settlement on the upper part of the wall and seepage in the front of the wall were discovered. Thus, there was a need to reevaluate the results of the existing stability assessment. It was confirmed that the issue was due to groundwater leakage, attributed to the lack of clear assessment of the colluvial soil layer during the initial design stage. Therefore, to conservatively reflect groundwater level conditions, a groundwater level contour was positioned at the top of the wall to conduct a slope stability assessment. The assessment results indicated that the safety factor during the rainy season exceeded the required value of 1.3, with a calculated safety factor of 1.31. However, during seismic events, the safety factor was determined to be 1.12, falling short of the required safety factor of 1.3. Therefore, it is suggested that the existing retaining walls constructed during stages one and two undergo reinforcement using methods such as micro-piles with grouting, and additional work should be carried out to ensure a clear assessment of the colluvial soil layer.

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

Behavior of Geosynthetic Reinforced Modular Block Walls under Sustained Loading using Reduced-Scale Model Test (축소모형실험에 의한 지속하중하에서의 보강토 옹벽의 거동특성 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Byun, Joseph;Kim, Young-Hoon;Han, Dae-Hui
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when used as part of permanent structures. In view of these concerns, time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained loads were investigated using reduced-scale model tests. The results indicated that a sustained load can yield appreciable magnitude of residual deformation, and that the magnitude of residual deformation depends on the loading characteristic as well as reinforcement stiffness.

  • PDF