• Title/Summary/Keyword: retaining structures

Search Result 265, Processing Time 0.035 seconds

Building Customer Loyalty with Trust and Familarity in the Internet-based Shopping-mall (인터넷쇼핑몰에서 신뢰와 친밀감이 고객충성도에 미치는 영향에 관한 연구)

  • Ko, Il-Sang;Choi, Su-Jeong
    • Asia pacific journal of information systems
    • /
    • v.15 no.3
    • /
    • pp.187-207
    • /
    • 2005
  • In the Internet-based B2C e-commerce, trust has been recognized as a critical factor to reduce uncertainties, through interacting with a well-known specific shopping mall. In this study, we view customer trust as not a unitary concept but multidimensional one consisted of the trustworthiness of trustee, familiarity with the specific shopping-mall, disposition to trust, and institution-based trust. In this study, first, we considered the trustworthiness of trustee consisted of capability, benevolence, and integrity as one of the major factors to build customer trust on the specific Internet shopping-mall. In the context of the Internet e-commerce, the role of institutional structures is very important to assure the customer trust from the various opportunistic behaviors because of the characteristics of internet-based commerce such as impersonality, the lack of information on the other party, and the transactions with a number of anonymous people. Second, we examined the effect of the institution-based trust built by institutional structures on customer trust. Third, we examined the effect of customer trust and familiarity on retaining customer loyalty. Our findings showed that customer trust and familiarity played a major role in retaining customer loyalty with the specific shopping-mall. In conclusions, we discussed the strategies to build the customer loyalty for maintaining the customer. We suggest customer trust and familiarity for the factors to bind the customer with the specific shopping-mall based on these results.

Frost Heave Force of Ground and Countermeasure for Damage of Structures (지반의 동상력과 구조물의 피해대책)

  • Rui, Da-Hu;Teruyuki, Suzuki;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.43-51
    • /
    • 2007
  • Frost action may cause extensive damage to building, structures, roads, railways and utility lines in seasonal frost. The research about frost heave of natural ground has been considerably performed. In late years various structures have become complicated with the development of social infrastructure maintenance. Therefore countermeasure to frost heave becomes a matter of great importance from a new viewpoint. This study was aimed at catching natural ground frost heaving force quantitatively. Frost heaving forces on circular steel plates which were set on ground surface were measured in field test. The frost heaving forces arise at freezing front propagates to the structures through frozen soil layer. Besides, a full scale model of multi-anchored retaining wall was installed in field, and the freezing lines, frost heave pressure to act on a wall block, and so on were measured. Finally, the position and shape of frost line were estimated by using numerical simulation and a method to determine replacement range was suggested with soil properties and weather data.

Rural areas, Vibration Stability Analysis of Wall and Retaining Wall of Low-rise Masonry Buildings (농촌지역 저층 조적조 건축물의 벽체 및 옹벽의 진동 안정 해석 - 전북 정읍시 ◯◯면 농촌지역 사례를 중심으로 -)

  • Lee, Deog-Yong;Kim, Il-Jung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.4
    • /
    • pp.59-66
    • /
    • 2014
  • This paper deals with vibration of plates with concentrated mass on elastic foundation. The object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Free vibration analysis that tapered thick plate in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on pasternak foundation. The Winkler parameter is varied with 10, $10^2$, $10^3$ and the shear foundation parameter is 5, 10. This paper is analyzed varying thickness by taper ratio. The taper ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0. And the Concentrated Mass is applied as P1, Pc, P2 respectively.

Compaction Induced Lateral Earth Pressures (뒷채움의 다짐에 의한 횡방향(橫方向) 토압(土壓))

  • Chung, Sung Gyo;Chung, In Joon;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.51-64
    • /
    • 1991
  • To evaluate the compaction - induced lateral earth pressure acting on retaining structures such as retaining walls, abutments, culverts, underground walls, etc., a new equation is developed using the newly proposed hysteretic model simulating soil's loading - unloading behavoir under Ko-condition. The lateral pressurds calculated by the new equation are found to agree well with those of field tests previously performed by other researchers.

  • PDF

Vibration Transfer Characteristics of the Reinforced Soil SRWs Under the Simulated Cyclic Train Loading (모사열차 반복하중 재하시 블록식 보강토 옹벽의 진동전달특성)

  • 고태훈;이진욱;이성혁;황선근;김정무
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.626-632
    • /
    • 2002
  • Geogrid is widely used as the reinforcement materials in railway earth structures in order to achieve efficient land utilization as well as securing safety in railway service lines in other countries. In this study, the real scale test was carried out to investigate the application of geogrid reinforced soil segmental retaining walls(SRWs) in railway. For this goal, the vibration transfer characteristics of reinforced soil segmental retaining walls was evaluated. The resonant frequencies of SRWs, vertical ground vibration in backfill and vertical/horizontal vibration at segmental units were acquired. This experimental data and analysis result can contribute to understand the vibration response behavior of SRWs.

  • PDF

Dimension extraction technique for structures using point cloud data

  • Jehee Han;Minseo Jang;SungKwon Woo;Do Hyoung Shin
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.570-576
    • /
    • 2024
  • Recently, digitalization technologies for data analysis have become a global issue. As a result, in the construction market, Building Information Modeling (BIM), which is a core technology of smart construction, is being actively utilized not only in the architectural sector but also in the civil engineering field worldwide. In this study, the process of creating BIM models using a 3D scanner is examined, and automated extraction of numerical information for infrastructures necessary for library creation is conducted. In experiments utilizing infrastructurs such as retaining walls and employing algorithmic methods, the accuracy of cross-sectional numerical information for each retaining wall was confirmed to be over 95%. This enables not only BIM modeling but also the generation of drawings for facilities lacking BIM drawings by confirming the shape information of infrastructures, thus facilitating efficient maintenance.

Displacement Measuring Lab. Test of Reinforced-Soil Retaining Wall Block using 3D Digital Photogrammetry Image (수치사진영상을 이용한 보강토옹벽블록의 변위계측 실내시험)

  • Han, Jung-Geun;Jeong, Young-Woong;Hong, Ki-Kwon;Cho, Sam-Deok;Kim, Young-Seok;Bae, Sang-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • The collapsed cases are more and more increasing at the large scaled structures because of increasing of the risk due to natural disasters. The measuring instrument such as inclinometer, total station on reinforced-soil retaining wall has been used that displacement, settlement for stability assessment, maintenance and management of it. But because these has gotten many instability measuring factors for stability analysis of RRW, new system needs to complement disadvantage of existing system. In this study, we considered a application of Visual Monitoring System (VMS) to measure a displacement in face of wall through Lab. test about block assembly of segmental retaining wall during load test.

  • PDF

Numerical Analysis of Retaining Wall Considering Supporting Load of Adjacent Retaining Wall (인접 흙막이 구조물의 지보재 하중을 고려한 가시설의 수치해석)

  • Yoo, Chanho;You, Jaemin;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • Recently, as the building construction works have been activated, the environment in which the excavation work is proceeding in parallel with the existing structure and the adjacent excavation work is increasing. However, there is not a lot of research on this. In this study, numerical analysis was carried out for interaction analysis between former excavation construction and follow-up excavation on two excavation retaining structures in parallel with excavation. As a result of numerical analysis, if the supporting load of strut is not considered, it was analyzed that the displacement distribution in the structure can be underestimated and acting stress of strut is overestimated. It was analyzed that the support stress causes by the former excavation should be considered in order to simulate the actual behavior characteristic.

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.