• Title/Summary/Keyword: restoring force

Search Result 187, Processing Time 0.023 seconds

Preliminary Design Procedure of MR Dampers for Controlling Seismic Response of Building Structures (건축구조물의 지진응답제어를 위한 MR 감쇠기 예비설계절차)

  • Lee, Sang-Hyun;Min, Kyung-Won;Lee, Roo-Jee;Kim, Joong-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.55-64
    • /
    • 2004
  • In this paper, the preliminary design procedure of magnetorheological (MR) dampers is developed for controlling the building response induced by seismic excitation. The dynamic characteristics and control effects of the modeling methods of MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc?Wen, Bouc?Wen with mass element, and phenomenological models are investigated. Of these models, hysteretic biviscous model which is simple and capable describing the hysteretic characteristics, is used for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force. A method is proposed for optimal placement and number of MR dampers, and its effectiveness is verified by comparing it with the simplified sequential search algorithm. Numerical results indicate that the capacity, number and the placement can be reasonably determined using the proposed design procedure.

Development of De-orbiter using Drag-sail (가항력돛을 이용한 궤도이탈장치 개발)

  • Choi, Junwoo;Kim, Si-on;Lee, Joowan;Yun, Tae-gook;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, we design and fabricate a de-orbiter using drag-sail and evaluate deployment characteristics. Without employing an actuator to deploy, the de-orbiter is activated by the SMA wire based the release mechanism and driven by the restoring force of the tape-spring. For efficient storage and deployment of drag-sail, an origami method of original ISO flasher is chosen and low priced mylar film is used as the material of the drag-sail. In addition, through the fault tree analysis method which is one of the one-shot device reliability evaluation methods, we confirm the reliability of the de-orbiter(0.997572) and the Roller failure has the highest criticality. Finally, we find feasibility of the proposed de-orbiter through the deployment demonstration of drag-sail.

CLINICAL STUDY OF THE ROTATIONAL INTENTIONAL REPLANTATION FOR THE TREATMENT OF INTRA-ALVEOLAR CROWN-ROOT FRACTURE : CASE REPORT (치관-치근 파절치의 회전을 이용한 의도적 재식술의 치험례)

  • Seo, Young-Ju;Lee, Nan-Young;Lee, Sang-Ho;Lee, Chang-Seop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.465-470
    • /
    • 2003
  • Transverse and oblique crown-root fractures constitute a major therapeutic problem, particularly in young dentitions. Because crown-root fracture may involve enamel, dentin, pulp, and periodontal tissues, management of the injuries must be modified accordingly. When the fracture line was located under the alveolar crest. there are several methods for crown-root fractured teeth with pulp exposure, such as extruding the root fragment with orthodontic force and restoring it, or intentionally extracting the tooth and replanting it to a position which it can be restored. This case, the fractured tooth is intentionally extracted atraumatically, and replanted by rotating approximately 180 degree into the original socket and fixing with an orthodontic wire. At the 8-month recall examination, the root still showed normal mobility and there was not observed any inflammatory or replacement root resorption in the periapical radiograph.

  • PDF

Design of Truncated Mooring Line Model in KRISO's Deepwater Ocean Engineering Basin

  • Jung, Hyun-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Hwang, Sung-Chul;Sung, Hong-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.227-238
    • /
    • 2015
  • The present work was an attempt to investigate the applicability of truncated mooring systems to KRISO's deep ocean engineering basin (DOEB) with ratios of 1:100, 1:60, and 1:50. The depth of the DOEB is 15 m. Therefore, the corresponding truncated depths for this study were equal to 1500 m, 900 m, and 750 m. The investigation focused on both the static and dynamic characteristics of the mooring system. It was shown, in a static pull-out test, that the restoring force of a FPSO vessel could be modified to a good level of agreement for all three truncation cases. However, when the radius of the mooring site was reduced according to the truncation factor, the surge motion response during a free-decay test showed a significant difference from the full-depth model. However, the reduction of this discrepancy was achieved by increasing the radius up to its maximum possible value while considering the size of the DOEB. Especially, in terms of the time period, the difference was reduced from 24.0 to 5.3 s for a truncation ratio of 1:100, 54.1 to 8.6 s for a truncation ratio of 1:60, and 31.7 to 3.9 s for a truncation ratio of 1:50. As a result, the study verified the applicability of the truncated mooring system to the DOEB, and therefore it could represent the full-depth mooring system relatively well in terms of the static and dynamic conditions.

Hydrodynamic Evaluation for Developing the New Inflatable Kayak (신형 인플래터블 카약 개발을 위한 유체역학적 성능평가)

  • Hah, Chong-Ku;Kim, Ho;Lim, Lee-Young;Ki, Jae-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.334-341
    • /
    • 2015
  • This study is to evaluate hydrodynamic performance evaluation between three kinds of inflatable kayaks, that is, a frame kayak, a needle knife kayak, and a v-hull kayak. In order to test, inclining and turning trial test are performed in the Ocean Engineering Basin. Also, a resistance test is performed with a reduced scale kayak in the circulating water channel. Consequently, First, the moment arm of a v-hull kayak is the largest with 132.4mm, but turning radius of one was the smallest of them. Second, the resistance of a needle knife kayak is the smallest with 71N, the center of gravity of one was the lowest with 0.128m of them, and then needle knife kayak occurs in a draft overall. Consequently, the v-hull kayak has had the advantages on restoring force and turning performance than others. The needle knife kayak has been more excellent on resistance and center of gravity than others.

Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class (10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구)

  • Kang, Sang Kyun;Lee, Ji Hyun;Lee, Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • Even though the variable pitch control of a wind turbine blade is known as an effective component for power control over the rated wind speed, it has limited applicability to small wind turbines because of its relatively high cost on the price of small wind turbine. Instead, stall control is generally applied in the blade design without any additional cost. However, stall delay can frequently be caused by high turbulence around the turbine blade, and it can produce control failures through excessive rotational speed and overpowering the electrical generator. Therefore, a passive pitch control module should be considered, where the pitch moves with the aerodynamic forces of the blade and returns by the elastic restoring force. In this study, a method to calculate the pitch moment, torque, and thrust based on the lift and drag of the rotating blade wing was demonstrated, and several effective wing shapes were reviewed based on these forces. Their characteristics will be estimated with variable wind speed and be utilized as basic data for the design of the passive pitch control module.

Analysis on Tension Response of Mooring Line by Lateral Excitation (수평가진에 의한 계류라인의 장력응답 해석)

  • Jung Dong Ho;Kim Hyeon Ju;Moon Deok Su;Park Han Il;Choi Hak Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • A mooring system can be applied to keep the position of a floating structures. In this study, the structural analysis is carried out to analyze the dynamic characteristics of a mooring line for a floating breakwater. A three-dimensional equations of motion for a submerged chain are derived. Bending stiffness is considered for the necessary restoring force in the regions of zero tension. A fortran program is to be developed by employing finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. The results of simulation show good agreement in tension response pattern with the experimental results of a reference. The results of this study can contribute for the design of mooring system for a floating breakwater.

  • PDF

Food Quality Characteristics of Instant Gruel Prepared with Peeled Krill Euphausia superba Meat (크릴(Euphausia superba) 육을 이용한 인스턴트 죽의 품질특성 평가)

  • Jung, Hae-Rim;Choi, Eun-Hye;Lee, Yang-Bong;Chun, Byung-Soo;Kim, Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.343-350
    • /
    • 2013
  • Instant krill gruel was produced using peeled Antarctic krill Euphausia superba as a high nutritional ingredient and the food quality was investigated. The food quality of krill gruel was examined by measuring proximate composition, cholesterol, calorie, Hunter color value, total amino acids, fatty acids, fluoride, viscoelastic properties, and by sensory evaluation. The krill gruel had a moisture content of 87% and a pH of 6.65. The krill gruel contained 51 kcal/100 g, and 0.1% fat and 3.5 mg/100 g cholesterol. Its fatty acid composition exhibited high levels of unsaturated fatty acids. The levels of oleic acid and linolenic acid were high, and n-3, n-6, and n-9 fatty acid contents ranged from 1% to 6%. The total amino acid content was 2132 mg/100 g, and the levels of glutamic acid, aspartic acid, leucine, alanine, and arginine were particularly high. Essential amino acids accounted for over 30% of the total amino acids. Fluoride level in the krill gruel was 3.07 mg/kg. The viscoelastic properties of the krill gruel were determined as 6.28 Pa at shear stress of 2.51 Pa. In the recovery test, the elastic restoring force after deformation was low.

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.