• Title/Summary/Keyword: response-surface

Search Result 4,731, Processing Time 0.031 seconds

Statistical Analysis of Termite Damage and Environmental Characteristics of the Josadang Shrine in Seonamsa Temple (선암사 조사당의 흰개미 피해 및 환경 특성 통계 분석)

  • Lim, Bo A;Kim, Myoung Nam;Kim, Young Hee;Lee, Jeung Min;Jo, Chang Wook;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.197-208
    • /
    • 2019
  • Biological damages of wooden cultural properties are closely related to the preservation of the environment; these damages can be accelerated because of rapid climate change. Therefore, to preserve cultural properties, it is important to understand environmental characteristics. This study aims to investigate the status of termite damage and the characteristics of major environmental factors such as micro-meteorology, meso-meteorology, and local-meteorology of the Josadang shrine in the Seonamsa temple at Suncheon. Damage was confirmed by visual observation and the response of the termite detection dog at the north-west corner. Also another damage was observed by the termite detection dog at the north-east corner. These pillars had lower surface temperature and higher moisture content compared with the pillars in the front. The mean temperature of the entire time was similar for the meteorologies; however, the relative humidity differed. High relative humidity, greater than 70%, was observed frequently. In particular, it was determined that the termite activity days were the most inside the Josadang shrine. The statistical analysis confirmed that there was a difference between the meteorology events through the F ratio. In addition, the difference of environmental factors with relative humidity and temperature was identified more great difference in relative humidity through the t-statistics of temperature and relative humidity. And then relative humidity was confirmed most great in the difference of meso-meteorology and local-meteorology.

Integrative analysis of cellular responses of Pseudomonas sp. HK-6 to explosive RDX using its xenA knockout mutant (Pseudomonas sp. HK-6의 xenA 돌연변이체를 이용하여 RDX 폭약에 노출된 세포반응들의 통합적 분석)

  • Lee, Bheong-Uk;Choi, Moon-Seop;Seok, Ji-Won;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.343-353
    • /
    • 2018
  • Our previous research demonstrated the essential role of the xenB gene in stress response to RDX by using Pseudomonas sp. HK-6 xenB knockout. We have extended this work to examine the cellular responses and altered proteomic profiles of the HK-6 xenA knockout mutant under RDX stress. The xenA mutant degraded RDX about 2-fold more slowly and its growth and survival rates were several-fold lower than the wild-type HK-6 strain. SEM revealed more severe morphological damages on the surface of the xenA mutant cells under RDX stress. The wild-type cells expressed proportionally-increased two stress shock proteins, DnaK and GroEL from the initial incubation time point or the relatively low RDX concentrations, but slightly less expressed at prolonged incubation period or higher RDX. However the xenA mutant did not produced DnaK and GroEL as RDX concentrations were gradually increased. The wild-type cells well maintained transcription levels of dnaA and groEL under increased RDX stress while those in the xenA mutant were decreased and eventually disappeared. The altered proteome profiles of xenA mutant cells under RDX stress also observed so that the 27 down-regulated plus the 3 up-regulated expression proteins were detected in 2-DE PAGE. These all results indicated that the intact xenA gene is necessary for maintaining cell integrity under the xenobiotic stress as well as performing an efficient RDX degradation process.

Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap (역삼각형 플랩을 이용한 진자형 파력발전장치의 파랑응답에 대한 수치적 재현 가능성)

  • Kim, Tag-Gyeom;Kim, Do-Sam;Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.203-216
    • /
    • 2021
  • Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.

Optimization of the formulation for manufacturing of Bokbunja (Rubus coreanus Miquel)-black mulberry (Morus alba) herbal pill by D-optimal mixture design approach (D-optimal mixture design 이용 복분자-오디 환 제조 배합비 최적화)

  • Moon, Jin-Young;Hwang, Su-Jung;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.174-180
    • /
    • 2021
  • The optimal recipe for manufacturing composite honey-based herbal pills mainly comprising Rubus coreanus powder (RCP), black mulberry powder (BMP), and vitamin C was investigated. Honey-based herbal pills were prepared by mixing these powders, binding them with honey, and then forming a round shape. The experiment was designed based on the D-optimal mixture design, which included 12 experimental points with one replicate for three independent variables as follows: RCP (10~35%), BMP (10~35%), and vitamin C (5~10%). In addition, the dependent variables (total phenolic and flavonoid content and antioxidant activity) were measured and used to optimize the manufacturing conditions. The results showed that high amounts of RCP were correlated with high total flavonoid content, whereas the addition of high amounts of vitamin C resulted in higher antioxidant activity. In conclusion, an optimized formulation for the honey-based herbal pill was found to contain 35% RCP, 10% BMP, and 10% vitamin C.

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

Structure Design Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Design of Experiments (실험계획법을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 구조설계 민감도 해석)

  • Kim, Hun-Gwan;Song, Chang Yong;Lee, Kangsu
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.98-106
    • /
    • 2021
  • The paper deals with comparative study on sensitivity analysis using various methods regarding to design of experiments for structure design of an active type DSF (Deck support frame) that was developed for float-over installation of offshore plant. The thickness sizing variables of structure member of the active type DSF were considered the design factors. The output responses were defined from the weight and the strength performances. Various methods such as orthogonal array design, Box-Behnken design, and Latin hypercube design were applied to the comparative study. In order to evaluate the approximation performance of the design space exploration according to the design of experiments, response surface method was generated for each design of experiment, and the accuracy characteristics of the approximation were reviewed. The design enhancement results such as numerical costs, weight minimization, etc. via the design of experiment methods were compared to the results of the best design. The orthogonal array design method represented the most improved results for the structure design of the active type DSF.

Polyphenols in peanut shells and their antioxidant activity: optimal extraction conditions and the evaluation of anti-obesity effects (폴리페놀 함량과 항산화력에 따른 피땅콩 겉껍질의 최적 추출 조건 확립과 항비만 기능성 평가)

  • Gam, Da Hye;Hong, Ji Woo;Yeom, Suh Hee;Kim, Jin Woo
    • Journal of Nutrition and Health
    • /
    • v.54 no.1
    • /
    • pp.116-128
    • /
    • 2021
  • Purpose: The extraction conditions for bioactive components from peanut shells, which is a byproduct of peanut processing, were optimized to enhance the total phenolic content (TPC, Y1), total flavonoid content (TFC, Y2), and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (RSA, Y3). In addition, this study evaluated the anti-obesity effect of peanut shell extract. Methods: Optimization of ultrasonic-assisted extraction (UAE) was performed using a response surface methodology. The independent variables applied for extraction were time (X1: 5.0-55.0), temperature (X2: 26.0-94.0), and ethanol concentration (X3: 0.0%-99.5%). Quadratic regression models were derived based on the results of 17 experimental sets, and an analysis of the variance was performed to verify its accuracy and precision of the regression equations. Results: When evaluating the effects of independent variables on responses using statistically-based optimization, the independent variable with the most significant effect on the TPC, TFC, and RSA was the ethanol concentration (p = 0.0008). The optimal extraction conditions to satisfy all three responses were 35.8 minutes, 82.7℃, and 96.0% ethanol. Under these conditions, the inhibitory activities of α-glucosidase and pancreatic lipase by the extract were 86.4% and 78.5%, respectively. Conclusion: In this study, UAE showed superior extraction efficiency compared to conventional hot-water extraction in the extraction of polyphenols and bioactive materials. In addition, α-glucosidase and pancreatic lipase inhibitory effects were identified, suggesting that peanut shells can be used as effective antioxidants and anti-obesity agents in functional foods and medicines.

The Study of Statistical Optimization of 1,4-dioxane Treatment Using E-beam Process (전자빔 공정을 이용한 1,4-Dioxane 처리의 통계적 최적화 연구)

  • Hwang, Haeyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.25-31
    • /
    • 2011
  • In this study, the experimental design methodology was applied to optimize 1,4-dioxane treatment in E-beam process. Main factor was mathematically described as a function of parameters 1,4-dioxane removal efficiencies(%), TOC removal efficiencies(%) modeled by the use of the central composite design(CCD) method among the response surface methodology(RSM). Concentration of 1,4-dioxane is designated as "$x_1$" and Irradiation intensity is designated as "$x_2$". The regression equation in coded unit between the 1,4-dioxane concentration and removal efficiencies(%) was $y=71.00-10.85x_1+20.67x_2+{1.53x_1}^2-{7.92x_2}^2-1.23x_1x_2$. The regression equation in coded unit between the 1,4-dioxane concentration and TOC removal efficiencies(%) was $y=44.48-13.25x_1+9.54x_2+{5.43x_1}^2-{1.35x_2}^2+4.45x_1x_2$. The model predictions agreed well with the experimentally observed results $R^2$(Adj) over 90%. Toxicity test using algae Pseudokirchneriella Subcapitata showed that the inhibition was reduced according to increasing an E-beam irradiation.

Application of Experimental Design Methods for Minimum Weight Design and Sensitivity Evaluation of Passive-Type Deck Support Frame for Offshore Plant Float-Over Installation (해양플랜트 플로트오버 설치 공법용 수동형 갑판 지지 프레임의 최소중량설계와 민감도 평가를 위한 실험계획법 응용)

  • Kim, Hun Gwan;Lee, Kangsu;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.161-171
    • /
    • 2021
  • This paper presents the findings of a comparative study on minimum weight design and sensitivity evaluation using different experimental design methods for the structural design of an active-type deck support frame (DSF) developed for the float-over installation of an of shore plant topside. The thickness sizing variables of the structural members of a passive-type DSF were considered the design factors, and the output responses were defined using the weight and strength performances. The design of the experimental methods applied in the comparative study of the minimum weight design and the sensitivity evaluation were the orthogonal array design, Box- Behnken design, and Latin hypercube design. A response surface method was generated for each design of the experiment to evaluate the approximation performance of the design space exploration according to the experimental design, and the accuracy characteristics of the approximation were reviewed. Regarding the minimum weight design, the design results, such as numerical costs and weight minimization, of the experimental design for the best design case, were evaluated. The Box- Behnken design method showed the optimum design results for the structural design of the passive-type DSF.