DOI QR코드

DOI QR Code

Structure Design Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Design of Experiments

실험계획법을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 구조설계 민감도 해석

  • Kim, Hun-Gwan (Dept. of Naval Architecture and Ocean Engineering, Mokpo National University) ;
  • Song, Chang Yong (Dept. of Naval Architecture and Ocean Engineering, Mokpo National University) ;
  • Lee, Kangsu (Korea Research Institute of Ships & Ocean Engineering)
  • 김훈관 (목포대학교 조선해양공학과) ;
  • 송창용 (목포대학교 조선해양공학과) ;
  • 이강수 (선박해양플랜트연구소)
  • Received : 2021.01.04
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

The paper deals with comparative study on sensitivity analysis using various methods regarding to design of experiments for structure design of an active type DSF (Deck support frame) that was developed for float-over installation of offshore plant. The thickness sizing variables of structure member of the active type DSF were considered the design factors. The output responses were defined from the weight and the strength performances. Various methods such as orthogonal array design, Box-Behnken design, and Latin hypercube design were applied to the comparative study. In order to evaluate the approximation performance of the design space exploration according to the design of experiments, response surface method was generated for each design of experiment, and the accuracy characteristics of the approximation were reviewed. The design enhancement results such as numerical costs, weight minimization, etc. via the design of experiment methods were compared to the results of the best design. The orthogonal array design method represented the most improved results for the structure design of the active type DSF.

본 연구에서는 해양플랜트의 플로트오버 설치작업을 위해 개발된 능동형 갑판 지지 프레임 (Deck support frame, DSF)의 구조설계에 대해 다양한 실험계획법을 이용한 민감도해석의 비교연구를 수행하였다. 능동형 DSF의 주요 구조부재의 두께 치수 변수는 설계인자로 고려하였고, 응답치는 중량과 강도성능으로부터 선정하였다. 민감도해석의 비교연구에 사용한 실험계획법은 직교배열설계법, Box-Behnken 설계법 그리고 Latin hypercube 설계법이다. 실험계획법의 설계공간 탐색의 근사화 성능을 평가하기 위해 반응표면법을 각 실험계획법 별로 생성하여 근사화 정확도 특성을 검토하였다. 또한 최상설계안의 결과로부터 실험계획법의 특성에 따른 수치계산 비용, 중량감소 효과 등과 같은 설계향상 효과를 비교하였다. 능동형 DSF의 구조설계에 대해 직교배열설계법이 가장 향상된 결과를 나타내었다.

Keywords

References

  1. J. M. Park, C. H. Park, T. S. Kim, & D. H. Choi. (2011). Optimal Determination of Pipe Support Types in Flare System for Minimizing Support Cost. Journal of the Society of Naval Architects of Korea, 48(4), 325-329. DOI: 10.3744/SNAK.2011.48.4.325
  2. C. Y. Song, J. Lee & J. M. Choung. (2011). Reliability-based Design Optimization of an FPSO Riser Support Using Moving Least Squares Response Surface Meta-models. Ocean Engineering, 38(1), 304-318. DOI: 10.1016/j.oceaneng.2010.11.001
  3. C. Y. Song. (2021). Approximate Optimization Based on Meta-model for Weight Minimization Design of Ocean Automatic Salt Collector. Journal of Convergence for Information Technology, 11(1), 109-117. DOI: 10.22156/CS4SMB.2021.11.01.109
  4. Y. J. Ji, J. S. Kwak, H. Y. Lee, & S. C. Kim. (2015). Optimal Arrangement of Resilient Mount Installed on Frame Support Structure at Shipboard Equipment Under Shock Load. Journal of the Society of Naval Architects of Korea, 52(4), 298-304. DOI: 10.3744/SNAK.2015.52.4.298
  5. J. H. Park, D. Lee, J. W. Yang, & C. Y. Song. (2019). Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments. Journal of Ocean Engineering and Technology, 33(1), 50-60. DOI: 10.26748/KSOE.2018.088
  6. DNV-GL. (2012). Load Transfer Operations, Det Norske Veritas.
  7. DNV-GL. (2013). Offshore Installation Operations, Det Norske Veritas.
  8. GL. (2015). Guidelines for Marine Transportations, GL Nobel Denton, 36.
  9. GL. (2015). Guidelines for Load-outs, GL Nobel Denton, 13.
  10. H. S. Kim, B. W. Kim, D. Jung & H. G. Sung. (2017). Numerical Study for Topside Effect on Behavior of Deck Transportation Vessel and Seafastening Structure, Proceedings of OCEANS 2017, Aberdeen.
  11. DNV-GL. (2015). Structural Design of Offshore Units WSD Method, Det Norske Veritas.
  12. Simulia. (2018). Abaqus User Manual. Simulia.
  13. S. H. Park. (2012). Design of Experiments, Seoul : Minyoung Publishing.
  14. G. E. P. Box & D. W. Behnken. (1960). Some New Three Level Designs for the Study of Quantitative Variables. Technometrics, 2(4), 455-475 https://doi.org/10.1080/00401706.1960.10489912
  15. Y. Kim, P. W. Park, K. Y. Park & J. C. Ryu. (2015). Optimization of Arc Brazing Process Parameters for Exhaust System Parts Using Box-Behnken Design of Experiment. Journal of Welding and Joining, 33(2), 23-31. DOI: 10.5781/JWJ.2015.33.2.23
  16. K. K. Lee & S. H. Han. (2012). Optimization of Wind Turbine pitch Controller by Neural Network Model Based on Latin Hypercube, Trans. of the Korean Soc. of Mech. Eng., A36(9), 1065-1071. DOI: 10.3795/KSME-A.2012.36.9.1065
  17. C. Y. Song & J. Lee. (2010). Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design. Transactions of the Korean Society of Mechanical Engineers A, 34(11), 1603-1611. DOI: 10.3795/KSME-A.2010.34.11.1603