• Title/Summary/Keyword: response-surface

Search Result 4,778, Processing Time 0.029 seconds

Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells

  • ZHANG, Jun-Feng;LIU, Qing-Shuai;GE, Yao-Jun;ZHAO, Lin
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.541-555
    • /
    • 2019
  • Wind induced dynamic responses on hyperbolic cooling tower (HCT) shells are complicated functions of structure and wind properties, such as the fundamental frequency fmin, damping ratio ζ, wind velocity V, correlationship in meridian direction and so on, but comprehensions on the sensitivities of the dynamic responses to these four factors are still limited and disagree from each other. Following the dynamic calculation in time domain, features of dynamic effects were elaborated, focusing on the background and resonant components σB and σR, and their contributions to the total rms value σT. The σR is always less than σB when only the maximum σT along latitude is concerned and the contribution of σR to σT varies with responses and locations, but the σR couldn't be neglected for structural design. Then, parameters of the above four factors were artificially adjusted respectively and their influences on the gust responses were illustrated. The relationships of σR and the former three factors were expressed by fitted equations which shows certain differences from the existing equations. Moreover, a new strategy for wind tunnel tests aiming at surface pressures and the following dynamic calculations, which demands less experiment equipment, was proposed according to the influence from meridian correlationship.

Effect of Environmental Stress on Morphological Change of an Extremely Cadmium-Tolerant Yeast, Hansenula anomala B-7

  • Huh, Nam-Eung;Choi, Nack-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.70-77
    • /
    • 1999
  • An extremely cadmium-tolerant budding yeast, Hansenula anomala B-7 underwent a morphological switch in response to either heat shock treatment or cadmium stress, respectively. It exhibited a morphological transition from a unicellular yeast form to a pseudohyphae-like coagulation when subjected to prolonged heat shock treatment. In contrast, the yeast cells showed an irregularity in surface morphology when given thermal stress for a short time. Patterns of proteins expressed in the pseudohyphae-like cells demonstrated that several proteins were overexpressed while others were underexpressed in comparison with those prepared from the cells in the yeast form. It was a striking feature, however, that nearly 40% of the proteins extracted from the cells in the pseudohyphae form appeared to be composed of a single polypeptide. This polypeptide was apparently overexpressed during the pseudohyphae phase and its molecular weight was estimated to be 58 kDa according to SDS-PAGE analysis. However, a significant level of the protein was not observed in the cells before transition to pseudohyphae. The architecture of the cell shape was also damaged when incubated in a medium containing more than 1,000 ppm (8.9mM) of cadmium ions, although able to proliferate at a slow rate. However, the irregularity in the cell morphology exerted either by the brief heat shock treatment or by the cadmium stress with the high concentrations of the metal ions was not repaired, even though the damaged cells were allowed to grow for sufficient time in fresh, cadmium-free medium.

  • PDF

Comparative Analysis of the Complete Genome of Lactobacillus plantarum GB-LP2 and Potential Candidate Genes for Host Immune System Enhancement

  • Kwak, Woori;Kim, Kwondo;Lee, Chul;Lee, Chanho;Kang, Jungsun;Cho, Kyungjin;Yoon, Sook Hee;Kang, Dae-Kyung;Kim, Heebal;Heo, Jaeyoung;Cho, Seoae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.684-692
    • /
    • 2016
  • Acute respiratory virus infectious diseases are a growing health problem, particularly among children and the elderly. Much effort has been made to develop probiotics that prevent influenza virus infections by enhancing innate immunity in the respiratory tract until vaccines are available. Lactobacillus plantarum GB-LP2, isolated from a traditional Korean fermented vegetable, has exhibited preventive effects on influenza virus infection in mice. To identify the molecular basis of this strain, we conducted a whole-genome assembly study. The single circular DNA chromosome of 3,284,304 bp was completely assembled and 3,250 protein-encoding genes were predicted. Evolutionarily accelerated genes related to the phenotypic trait of anti-infective activities for influenza virus were identified. These genes encode three integral membrane proteins, a teichoic acid export ATP-binding protein and a glucosamine - fructose-6-phosphate aminotransferase involved in host innate immunity, the nonspecific DNA-binding protein Dps, which protects bacteria from oxidative damage, and the response regulator of the three-component quorum-sensing regulatory system, which is related to the capacity of adhesion to the surface of the respiratory tract and competition with pathogens. This is the first study to identify the genetic backgrounds of the antiviral activity in L. plantarum strains. These findings provide insight into the anti-infective activities of L. plantarum and the development of preventive probiotics.

Enhanced Acid Tolerance in Bifidobacterium longum by Adaptive Evolution: Comparison of the Genes between the Acid-Resistant Variant and Wild-Type Strain

  • Jiang, Yunyun;Ren, Fazheng;Liu, Songling;Zhao, Liang;Guo, Huiyuan;Hou, Caiyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.452-460
    • /
    • 2016
  • Acid stress can affect the viability of probiotics, especially Bifidobacterium. This study aimed to improve the acid tolerance of Bifidobacterium longum BBMN68 using adaptive evolution. The stress response, and genomic differences of the parental strain and the variant strain were compared by acid stress. The highest acid-resistant mutant strain (BBMN68m) was isolated from more than 100 asexual lines, which were adaptive to the acid stress for 10th, 20th, 30th, 40th, and 50th repeats, respectively. The variant strain showed a significant increase in acid tolerance under conditions of pH 2.5 for 2 h (from 7.92 to 4.44 log CFU/ml) compared with the wild-type strain (WT, from 7.87 to 0 log CFU/ml). The surface of the variant strain was also smoother. Comparative whole-genome analysis showed that the galactosyl transferase D gene (cpsD, bbmn68_1012), a key gene involved in exopolysaccharide (EPS) synthesis, was altered by two nucleotides in the mutant, causing alteration in amino acids, pI (from 8.94 to 9.19), and predicted protein structure. Meanwhile, cpsD expression and EPS production were also reduced in the variant strain (p < 0.05) compared with WT, and the exogenous WT-EPS in the variant strain reduced its acid-resistant ability. These results suggested EPS was related to acid responses of BBMN68.

Investigation of Change in Air-Sea CO2 Exchange over the East China Sea using Biogeochemical Ocean Modeling (생지화학모델링을 이용한 동중국해 해양-대기 CO2교환량의 변화 연구)

  • Park, Young-Gyu;Choi, Sang-Hwa;Yeh, Sang-Wook;Lee, Jung-Suk;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.325-334
    • /
    • 2008
  • A biogeochemical model was used to estimate air-sea $CO_2$ exchange over the East China Sea. Since fresh water discharge from the Changjiang River and relevant chemistry were not considered in the employed model, we were not able to produce accurate results around the Changjiang River mouth. This factor aside, the model showed that the East China Sea, away from the Changjiang River mouth, takes approximately $1.5{\sim}2\;mole\;m^{-2}yr^{-1}$ of $CO_2$ from the atmosphere. The model also showed that biological factors modify the air-sea $CO_2$ flux by only a few percent when we assumed that biological activity increased two-fold. Therefore, we can argue that the biological effect is not strong enough over this area within the framework of the current phosphate-based biological model. Compared to the preindustrial era, in 1995 the East China Sea absorbed $0.4{\sim}0.8\;mole\;m^{-2}yr^{-1}$ more $CO_2$. If warming of the sea surface is considered, in addition to the increase in atmospheric $CO_2$ concentration, by 2045 the East China Sea would absorb $0.2{\sim}0.4\;mole\;m^{-2}yr^{-1}$ less $CO_2$ compared to the non-warming case.

Study on the measurement of blasting vibration response in construction a subway station at East gate of cultural treasure (지하철건설에 따른 문화재 보호와 동대문역사시공 보고서(1))

  • Choi, Sang-Yol;Ree, Soo-Book;Huh, Ginn;Chai, Soo-Yun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.17 no.3
    • /
    • pp.32-49
    • /
    • 1984
  • The East gate station area is 205M long and 24m deep which is located 13 meter in front of cultural treasure east gate. The area to be excavated by blasting is composed of granite rocks from 10M depth to 25M. Surface earth extends to up 10M depth. This job site has in involves heavy traffic congestion such as over 10,000 cars passing in rush hour where clossing No 1 lint of subway running 3 minitues head way. This east gate station construction is to be executed for the provent of the setting down of underground level and blasting vibration effects to cultural treasure east gate. Therefore, the caltural treasure committee approved this execution subject to the following condition. 1. Subway gelogical foundation and measured natural frequency 2. Execution of water tight wall 3. Sellection and test of damping material for wall and under rail 4. Measurement of monitoring system during the execution 5. Measurement of histogram system The above two projects was carried out by Dr. Kwang team in KAIST and prof, Han in Hanyang University under accadamic study contract. In the blasting work, for the pourpose of reduced vibration and low explosion velocity such as CCR, Kovex slurry. The 2nd, used electrical caps shall be delay cap and M/S caps in multi delay. The 3rd, drilling pattern is bench cut in open cut and applied control blasting in tunnelling and also shall drill anti-vibration holes as line drilling.

  • PDF

Changes in the Quality of Crab-like Flavorants during Storage (게 향미제의 저장중 품질특성 변화)

  • Baek, Jeong-Hwa;Jeong, Eun-Jeong;Jeon, Seon-Young;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.2
    • /
    • pp.104-113
    • /
    • 2012
  • Crab-like flavorants (CFs) were made from snow crab cooker effluent (SCCE) using response surface methodology (RSM) and reaction flavoring technology (RFT). Type A CF was made from SCCE via RSM, RFT, adding starch syrup, centrifugation, and microfiltration. Type B was made from type A by adding the food additives dimethyl sulfide, ethyl valerate and fish sauce. The stability of the CFs was evaluated in terms of the color values, sensory evaluation, and flavor profiles after storage for 90 days at three different temperatures: 10, 20, and $30^{\circ}C$. The compounds, ethanol and 3-methyl-1-butanol, were considered key components of off-flavor and a decrease in dimethyl-2-vinylpyrazine affected the occurrence of off-flavor. It may be a microbial metabolite arising from contamination and lab-scale micro-filtration. At the lowest temperature ($10^{\circ}C$), the decrease in volatile compounds, such as pyrazines, was not as dramatic as at $20^{\circ}C$ and $30^{\circ}C$ and alcohol formation was prevented or delayed. Therefore, it is necessary to store CFs at < $10^{\circ}C$ with suitable sterilization to preserve volatile flavor compounds and prevent off-flavor from occurring.

Composting of Organic Wastes by solid State Fermentation Reactor (Solid State Fermentation Reactor를 이용한 유기성 폐기물의 발효)

  • 홍운표;이신영
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.311-319
    • /
    • 1999
  • Leaves of Aloe vera Linne and bloods of domestic animal were composted in a soild state fermentation reactor (SSFR) by using microbial additive including a bulking and moisture controlling agent. From solid-culture of microbial additive, 10 species of bacteria and 10 species of fungi were isolated and, their enzyme activities including amylase, carboxy methyl cellulase CMCase, lipase and protease were detected. Optimum fermentation conditions of Aloe leaves and domestic animal bloods in SSFR were obtained from the studies of response surface analysis employing microbial additive content, initial moisture content, and fermentation temperature as the independent variables. The optimum conditions for SSFR using Aloe leaves were obtained at 9.45$\pm$73%(w/w) of microbial additives, 62.73$\pm$4.54%(w/w) of initial moisture content and 55.32$\pm$3.14$^{\circ}C$ of fermentation temperature while those for SSFR using domestic animal bloods were obtained at 10.25$\pm$2.04%, 58.68$\pm$4.97% and 57.85$\pm$5.$65^{\circ}C$, respectively. Composting process in SSFR was initially proceeded through fermentation and solid materials were decomposed within 24 hours by maintaining higher moisture level, and maturing and drying steps are followed later. After the fermentation step, the concentrations of solid phase inorganic components were increased while that of organic components were decreased. Also, concentrations of total organic carbon(TOC), peptides, amino acids, polysaccharides, and low fatty acids in water extracts were increased. As fermentation in composting process depends on initial C/N ratios in water extracts of two samples were increased because of increased water-soluble TOC. From these results, it was revealed that solid state fermentation reactor using microbial additives can be used in composting process of organic wastes with broad C/N ratio.

  • PDF

Effects of Soil-Plant Interactive System on Response to Exposure to ZnO Nanoparticles

  • Lee, Sooyeon;Kim, Saeyeon;Kim, Sunghyun;Lee, Insook
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1264-1270
    • /
    • 2012
  • The ecotoxicological effects of nanomaterials on animal, plant, and soil microorganisms have been widely investigated; however, the nanotoxic effects of plant-soil interactive systems are still largely unknown. In the present study, the effects of ZnO nanoparticles (NPs) on the soil-plant interactive system were estimated. The growth of plant seedlings in the presence of different concentrations of ZnO NPs within microcosm soil (M) and natural soil (NS) was compared. Changes in dehydrogenase activity (DHA) and soil bacterial community diversity were estimated based on the microcosm with plants (M+P) and microcosm without plants (M-P) in different concentrations of ZnO NPs treatment. The shoot growth of M+P and NS+P was significantly inhibited by 24% and 31.5% relative to the control at a ZnO NPs concentration of 1,000 mg/kg. The DHA levels decreased following increased ZnO NPs concentration. Specifically, these levels were significantly reduced from 100 mg/kg in M-P and only 1,000 mg/kg in M+P. Different clustering groups of M+P and M-P were observed in the principal component analysis (PCA). Therefore, the M-P's soil bacterial population may have more toxic effects at a high dose of ZnO NPs than M+P's. The plant and activation of soil bacteria in the M+P may have a less toxic interactive effect on each of the soil bacterial populations and plant growth by the ZnO NPs attachment or absorption of plant roots surface. The soil-plant interactive system might help decrease the toxic effects of ZnO NPs on the rhizobacteria population.

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.