• 제목/요약/키워드: response surfaces method

검색결과 138건 처리시간 0.031초

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.

고 받음각에서의 방향 안정성 향상을 위한 Chine 형상 최적설계 (Chine Shape Optimization for Directional Stability at High Angle of Attack)

  • 박형욱;박미영;이재우;변영환
    • 한국항공우주학회지
    • /
    • 제36권9호
    • /
    • pp.825-834
    • /
    • 2008
  • 고 받음각에서의 방향 안정성 향상을 위한 chine 형상 최적화를 수행하였다. Super ellipse equation을 통하여 다양한 형태의 chine 형상을 생성하고, 3차원 Navier-Stokes 방정식을 이용하여 방향안정성 및 고받음각에서의 공력 특성을 분석하였으며, 가장 높은 방향 안정성을 갖는 형상을 기본형상으로 선정하였다. 파리미터를 이용한 기본형상의 곡면 변형을 통하여 높은 방향 안정성 및 양항비를 동시에 만족하는 최적형상 도출을 위하여, 반응면을 구성하고 가중치를 도입하고 양항비를 구속조건으로 하는 방향안정성 최적화 문제를 수행하였다. 본 연구를 통하여 고받음각에서 chine형상의 공력특성을 파악하여 강한 와류를 발생시키는 chine 형상이 방향안정성에 도움이 된다는 것을 확인할 수 있었으며 최적화를 통해 기본형상보다 방향안정성이 약 29% 향상되는 결과를 얻었다. 또한 파라미터 기반 형상 생성기법과 근사최적화 기법의 연동을 이용한 형상최적설계 과정을 초음속, 고받음각 유동의 chine 형상설계에 적용하여 그 효율성을 확인하였다.

헬리콥터 회전날개깃의 안정성 해석과 제어 (Aeromechanical stability analysis and control of helicopter rotor blades)

  • 김종선
    • 한국항공운항학회지
    • /
    • 제9권1호
    • /
    • pp.59-69
    • /
    • 2001
  • 복합재로 된 회전날개깃을 상자보로 모델링하고 수동/능동 감쇠를 주기 위해 ACL(Active Constrained Damping Layer)을 상하양면에 부착하고 복합변위이론에 기초한 유한요소방법을 이용하여 구조해석을 수행하였다. 이 이론은 ACL내의 복합재와 점탄성층 그리고 압전층의 전단변형효과를 정확하게 모델링하는데 효과적이다. Hankel 의 특이값을 이용해 축차모델을 유도하였으며 축차모델과 측정된 출력에 기초한 LQG 제어기를 설계하였다. 그러나 LQG 제어기는 공칭 운전속도에서는 좋은 성능을 보여주었으나 운전속도가 변하는 상황에 대해서는 강인안정성을 보여주지 못했다. 이 LQG제어기의 강인안정성을 개선하기 위하여 루프전달회복을 통한 강인한 제어기를 설계하였다. 수치 예를 통해 제시된 제어기가 회전날개깃의 공기역학적인 안정성을 개선하는데 효과적이며 동체모드와 연계된 리드-래그 모드감쇠를 증가시켜 회전날개깃의 진동을 효과적으로 억제하는 것을 보였다.

  • PDF

Moisture Absorption and Desorption Properties of Douglas Fir, Hinoki, Larch, Plywood, and WML Board in Response to Humidity Variation

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권4호
    • /
    • pp.488-502
    • /
    • 2020
  • In this study, the moisture absorption and desorption properties presented by the Health-Friendly Housing Construction Standards of South Korea were compared using the wood of three tree species (Douglas-fir, Hinoki, Larch) and two types of wood-based materials(Plywood, WML Board). The national standards for functional building materials present that the amounts of moisture absorption and desorption should be at least 65g/㎡ on average, respectively according to the test method under KS F 2611:2009. Therefore, in this study, the moisture absorption/desorption properties of materials with no treatment (Control), with punching, and with surface stain finishing and the moisture absorption/desorption property improvement effects of the treatments were compared and analyzed. According to the results of this study, it was evaluated that all five types of wood and wood-based materials tested did not satisfy the amount of moisture absorption/desorption of at least 65g/㎡, which is the performance standard for moisture absorption/desorption functional building materials, indicating that untreated wood and wood-based materials cannot be applied as functional finishing materials according to the Health-Friendly Housing Construction Standards. The surface stain finishing greatly reduced the moisture absorption and desorption rates of the materials, and the amounts of moisture absorbed and desorbed were also shown to decrease by at least two times on average. When the surfaces of the materials were punched with Ø4mm holes at intervals of 20 mm, the moisture absorption/desorption areas increased from 18% to 51%, and this increase was shown to be capable of increasing the amounts of moisture absorbed/desorbed by 29% on average at the minimum, and 81% on average at the maximum. The effects of punching were shown to be identical even in cases where the materials were stain finished. For the application of wood or wood-based materials as eco-friendly, health-friendly, and moisture absorption/desorption functional building materials hereafter, it is judged that new physical and chemical improvement studies should be conducted, and treatment methods should be developed.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

다중 패치 쉘 아이소 지오메트릭 해석의 계면 연속성 검토 (Studies of Interface Continuity in Isogeometric Structural Analysis for Multi-patch Shell Components)

  • 하윤도;노정민
    • 한국전산구조공학회논문집
    • /
    • 제31권2호
    • /
    • pp.71-78
    • /
    • 2018
  • 본 연구에서는 NURBS 기반 아이소 지오메트릭 쉘 해석을 위해 다중 패치 해석 모델을 정식화하였다. 기존 연구를 통해 개발된 단일 패치로 구성된 전단 변형을 고려한 쉘 요소에 대해 일반 좌표계에서 기하학적으로 엄밀한 쉘 구조물의 아이소 지오메트릭 해석 모델을 도입하고 매개변수 연속성을 고려하여 다중 패치 모델로 확장하였다. 인접 곡면의 노트 요소가 결합 경계를 통해 조화를 이루는 경우에 대해 0차와 1차 매개변수 연속성 조건을 고려하였으며, 두 패치 간 마스터-슬레이브 관계를 정립하여 종속된 한 곡면의 자유도를 상대 곡면의 자유도로 표시하여 모델 크기를 줄이면서 두 곡면을 결합하였다. 다중 패치 쉘 예제에 대해 0차와 1차 연속성 조건을 각각 적용하여 구조해석을 수행하여 1차 연속성 조건의 주요한 특성들을 확인하였다. 또한 각 연속성 조건에 대한 해의 수렴 특성을 검토하였으며 결합 경계에서의 두 패치의 연속성을 확인하였다.

Liquid crystal aligning capabilities for vertical aligned NLC on the $CeO_x$ thin film layer with thermal evaporation

  • Han, Jin-Woo;Kim, Mi-Jung;Kim, Jong-Yeon;Han, Jeong-Min;Kim, Young-Hwan;Kim, Jong-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.371-371
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for vertical alignment on the $CeO_x$ thin film by thermal evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $CeO_x$ thin film were investgated. The uniform LC alignment on the $CeO_x$ thin film surfaces and good thermal stabilities with thermal evaporation can be achieved. It is considerated that the LC alignment on the $CeO_x$ thin film by thermal evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $CeO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $CeO_x$ thin film layer with oblique thermal evaporation.

  • PDF

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

상용화된 치과용 임플란트의 뒤틀림 제거력 및 조직학적 분석 연구: 가토 경골에서의 연구 (Removal Torque and Histomorphometric Investigation of Surface Modified Commercial Implants: An Experimental Study in the Rabbit Tibia)

  • 박종현;김대곤;조리라;박찬진
    • 구강회복응용과학지
    • /
    • 제24권1호
    • /
    • pp.41-56
    • /
    • 2008
  • 상용 임플란트의 표면을 개질하기 위해 물리적, 화학적 방법을 이용한 새로운 표면이 증가하고 있으며 이에 대한 골반응도 다를 것으로 예상할 수 있지만 대부분의 연구는 단순히 기계절삭형 임플란트와의 비교만을 하고 있다. 본 연구에서는 4종의 다른 개질된 표면을 가진 상용 임플란트를 가토의 경골에 식립한 후 생역학적, 조직형태학적으로 비교하였다. 연구 결과, 모든 임플란트는 6주 후 안정적인 골유착을 이루고 있었으며 4종의 표면개질의 차이에 의한 공진주파수 및 조직형태학적 골반응의 차이는 없었으며 표면개질을 비교하기 위해 피질골 하방으로 증식한 골을 비교하는 것이 유용하였다. 생역학적, 조직형태학적 골반응에 비해 미세단층촬영(micro-CT)를 이용하는 비교법은 유용성과 정확도가 낮은 것으로 나타났다.

공동주택 녹색건축인증기준의 외부공간 환경성능 평가지표 보완방안 - 기후변화 대응 측면을 중심으로 - (Complementary measures for Environmental Performance Evaluation Index of External Space of Green Standard for Energy and Environmental Design for Apartment Complex - Focused on the Respect of Response to Climate Change -)

  • 예태곤;김광현;권영상
    • 대한건축학회논문집:계획계
    • /
    • 제34권1호
    • /
    • pp.3-14
    • /
    • 2018
  • An apartment complex is a building use with great potential to contribute to solving problems related to urban ecological environment and climate change. The first goal of this study is to grasp the current situation of application and limitations of the ecological area rate, which is a representative evaluation index used to evaluate the environmental performance of the external space of an apartment complex in Green Standard for Energy and Environmental Design (G-SEED). The second goal is to propose a prototype of the evaluation index for evaluating greenhouse gas (GHG) reduction performance in order to supplement the evaluation index for the environmental performance of the external space in terms of response to climate change. We analyzed 43 cases of apartment complexes certified according to G-SEED, which was enforced since July 1, 2010, and found application characteristics of each space type and the limitations of ecological area rate. We analyzed overseas green building certification systems such as LEED and BREEAM that derived implications for supplementing the limitations of ecological area rate, which is focused on the evaluation of soil and water circulation function, and set up a development direction of complementary measures. Through analysis of previous studies, relevant regulations and standards, and technical documents of the manufacturer, the heat island mitigation performance of the pavement and roof surfaces of the apartment complex and the carbon uptake performance of the trees in the apartment complex was selected as parameters to yield the GHG reduction performance of the external space of the apartment complex. Finally, a quantitative evaluation method for each parameter and a prototype of the evaluation index for the GHG reduction performance were proposed. As a result of applying the prototype to an apartment complex case, the possibility of adoption and applicability as an evaluation index of G-SEED were proved.