• Title/Summary/Keyword: response surface optimization

Search Result 1,447, Processing Time 0.033 seconds

Optimization of Enzymatic Synthesis Condition of Structured Lipids by Response Surface Methodology (반응표면분석에 의한 기능성 유지의 효소적 합성 조건 최적화)

  • Cho, Eun-Jin;Lee, Jong-Ho;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.531-536
    • /
    • 2004
  • Synthesis conditions were optimized using response surface methodology for producing structured lipids (SL) by interesterification of DHA-enriched algae oil derived from microalgae, Schizochytrium sp. and corn oil. Reaction was performed fer 24 hr at $55^{\circ}C$ catalyzed by immobilized lipase from Rhizomucor miehei (RM IM) in shaking water bath. Major fatty acids of SL were palmitic (21.70 mol%), oleic (20.20 mol%), and linoleic (27.34 mol%) acids, and DHA (15.06 mol%). To separate newly synthesized SL-triglycerides (TG) species, HPLC with evaporative light scatting detector (ELSD) was used. Production conditions were optimized using central composite design with reaction temperature $(35-75^{\circ}C,\;X_1)$, reaction time $(2-42\;hr,\;X_2)$, and enzyme concentration $(2-14%,\;X_3)$ as variables. When variables were $70.28^{\circ}C\;(X_1),\;28.74\;hr\;(X_2),\;and\;11.30%\;(X_3)$, maximum content of selected three peaks of synthesized SL-TG species was predicted as 6.97 area%.

Optimization of Preparation Conditions and Quality Characteristics of Sweet Pumpkin Stock (단호박 스톡 제조조건의 최적화 및 품질 특성)

  • Han, Chi-Won;Park, Won-Jong;Seung, Suk-Kyung
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.832-839
    • /
    • 2008
  • The stock that is the first step for preparation of soups and purees links to the taste of food. Many types of vegetable have been used in stocks, but this study focused on stocks prepared with sweet pumpkin. The stock preparation conditions including the weight of sweet pumpkin, the water volume, and the boiling time at $97^{\circ}C$ were optimized by response surface methodology. The quality characteristics of the resulting stock were investigated. The color, flavor, taste and overall acceptability were dependent parameters. A model equation was proposed with regard to the sweet pumpkin weight, water volume, and boiling time at $97^{\circ}C$. A sweet pumpkin weight of 357.9 to 403.0 g, a water volume of 689.8 to 768.5 mL, and a boiling time of 9.9 to 10.3 min at $97^{\circ}C$ were found to be the optimal stock preparation conditions. The quality characteristics of the sweet pumpkin stock prepared under the optimized conditions were pH 6.64, total acidity 0.18%, soluble solids $2.39\;^{\circ}Brix$, color value (L, 99.07 a, -2.43 b, 11.82), total polyphenol 280.75 mg/L, and electron donating ability 21.32%.

Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology

  • Kim, Yong Hyun;Park, Bu Soo;Bhatia, Shashi Kant;Seo, Hyung-Min;Jeon, Jong-Min;Kim, Hyun-Joong;Yi, Da-Hye;Lee, Ju-Hee;Choi, Kwon-Young;Park, Hyung-Yeon;Kim, Yun-Gon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1319-1326
    • /
    • 2014
  • Rapamycin, produced by the soil bacterium Streptomyces hygroscopicus, has the ability to suppress the immune system and is used as an antifungal, anti-inflammatory, antitumor, and immunosuppressive agent. In an attempt to increase the productivity of rapamycin, mutagenesis of wild-type Streptomyces hygroscopicus was performed using ultraviolet radiation, and the medium composition was optimized using glycerol (which is one of the cheapest starting substrates) by applying Plackett-Burman design and response surface methodology. Plackett-Burman design was used to analyze 14 medium constituents: M100 (maltodextrin), glycerol, soybean meal, soytone, yeast extract, $(NH_4)_2SO_4$, $\small{L}$-lysine, $KH_2PO_4$, $K_2HPO_4$, NaCl, $FeSO_4{cdot}7H_2O$, $CaCO_3$, 2-(N-morpholino) ethanesulfonic acid, and the initial pH level. Glycerol, soytone, yeast extract, and $CaCO_3$ were analyzed to evaluate their effect on rapamycin production. The individual and interaction effects of the four selected variables were determined by Box-Behnken design, suggesting $CaCO_3$, soytone, and yeast extract have negative effects, but glycerol was a positive factor to determine rapamycin productivity. Medium optimization using statistical design resulted in a 45% ($220.7{\pm}5.7mg/l$) increase in rapamycin production for the Streptomyces hygroscopicus mutant, compared with the unoptimized production medium ($151.9{\pm}22.6mg/l$), and nearly 588% compared with wild-type Streptomyces hygroscopicus ($37.5{\pm}2.8mg/l$). The change in pH showed that $CaCO_3$ is a critical and negative factor for rapamycin production.

The Optimization of Removal Process of Humic Acid by Polysulfone Hollow-fiber Membrane (폴리설폰 중공사막에 의한 부식산 제거공정의 최적화)

  • Song, Kun-Ho;Lee, Kwang-Rae;Lee, Chan-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1273-1284
    • /
    • 2000
  • In this study, ultrafiltration was performed to remove humic acid from aqueous solution. Since the effects of system variables on the ultrafiltration were tangled with non-linearly. Response Surface Methodology(RSM) was used to know optimum conditions of ultrafiltration process, relations among system variables, and the effects of system variables such as pressure difference across the membrane, concentration of humic acid, and feed flow rates. As concentrations of humic acid were 10ppm, 40ppm, and 70ppm in feed stream, permeation fluxes were 2.56, 2.27, and $2.10({\times}10^{-2}cc/cm^2{\cdot}min)$ respectively ; in other words, permeation fluxes of 10ppm, 40ppm and 70ppm feed concentration decreased by 17.7%, 26.7% and 32.2% of pure water permeation flux respectively. Concentration of humic acid in permeate side were 0.5ppm, 1.2 ppm, and 2.1ppm respectively. When pressure difference(${\Delta}P$) increased from 1atm to 2atm and 3atm, permeation fluxes of 40ppm feed concentration increased by 66% and 152% of permeation rate at 1atm respectively. However, concentrations of humic acid in permeate side increased from 0.5ppm to 1.5ppm and 3.5ppm. RSM showed that the optimum condition of system variables is 38.5~40ppm of humic acid concentration in feed stream, 30~30.7cc/min of feed flow rate, and 2atm of pressure difference.

  • PDF

Optimization of a Crystallization Process by Response Surface Methodology (반응표면분석법을 이용한 결정화 공정의 최적화)

  • Lee, Se-Eun;Kim, Jae-Kyeong;Han, Sang-Keun;Chae, Joo-Seung;Lee, Keun-Duk;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.730-736
    • /
    • 2015
  • Cyclotrimethylene trinitramine (RDX) is a high explosive commonly used for military applications. Submicronization of RDX particles has been a critical issue in order to alleviate the unintended and accidental stimuli toward safer and more powerful performances. The purpose of this study is to optimize experimental variables for drowning-out crystallization applied to produce submicron RDX particles. Effects of RDX concentration, anti-solvent temperature and anti-solvent mass were analyzed by the central composite rotatable design. The adjusted determination coefficient of regression model was calculated to be 0.9984 having the p-value less than 0.01. Response surface plots based on the central composite rotatable design determined the optimum conditions such as RDX concentration of 3 wt%, anti-solvent temperature of $0.2^{\circ}C$ and anti-solvent mass of 266 g. The optimum and experimental diameters of RDX particles were measured to be $0.53{\mu}m$ and $0.53{\mu}m$, respectively. The regression model satisfactorily predicts the average diameter of RDX particles prepared by drowning-out crystallization. Structure of RDX crystals was found to be ${\alpha}$-form by X-ray diffraction analysis and FT-IR spectroscopy.

Optimization of Nanoencapsulation Process for Azelaic Acid-Milk Nano Powder and Acne Nanocosmetics (Azelaic Acid 함유 밀크 나노분말과 여드름 나노화장품을 위한 나노캡슐의 최적화 공정)

  • Kim, Dong-Myong;Choi, Ji-Eun;Kim, Duck-Hoon;Lee, Jun-Tack
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.43-53
    • /
    • 2011
  • The conditions in fluid-bed processor for nanoencapsulation of azelaic acid-milk nano powder for acne nanocosmetics were optimized by response surface methodology (RSM). The maximum value of yield was 70.97 %. The yield was appreciably influenced by inlet air temperature, atomizing pressure, and feeding speed. The particle size increased with an increase in the feeding speed and a decrease in the atomizing pressure. The elution rate in saline solutions was appreciably influenced by inlet air temperature and atomizing pressure. The moisture content increased with higher atomizing pressure, which was demonstrated to be similar to the nanoencapsulation characteristics related to water activity. The Hunter's L and b values increased with an increase in the inlet air temperature. The optimum conditions estimated by RSM for the maximized values of yield, moisture content, particle size and elution rate in skin suitability were $67{\sim}73^{\circ}C$ of inlet air temperature, 0.6 ~ 0.8 mL/min feeding speed and 1.8 ~ 2.0 kg/$cm^2$ of atomizing pressure, respectively. These estimated values were in agreement with those measured by real experiments.

Optimization of Ethanol Extraction Conditions for Effective Components from Gastrodia elata Blume (천마 유효성분의 에탄올 추출조건 최적화)

  • Kim Seong-Ho;Kim In-Ho;Kang Bok-Hee;Lee Sang-Han;Lee Jin-Man
    • Food Science and Preservation
    • /
    • v.13 no.4
    • /
    • pp.506-512
    • /
    • 2006
  • Gastrodia elata Blume (GEB) is a traditional herbal plant that has been used in Asian countries for centuries as an anticonvulsant analgesic, and a sedative for treating general paralysis, epilepsy, vertigo, and tetanus. This study was designed to optimize conditions for ethanol extracts or GEB by analyzing and monitoring the extraction characteristics with response surface methodology. The extract was used for analysis of the effective components of GEB. The estimated optimal conditions were 63.62% in ethanol of 5.06 mL/g in solvent per sample, and 6.25 hr in extract time. The optimal extraction conditions for $ \gamma-aminobutyric$ acid, were 45.52%, 5.67 mL/g, and 6.04 hr, while those for $\rho-hydroxybenzyl$ alcohol were 62.73%, 5.02 mL/g, and 5.95 hr. Regression equation was generated for each variables and then superimposed them, such as soluble solid, $ \gamma-aminobutyric$ acid and $\rho-hydroxybenzyl$ alcohol content thereby resulting in superimposed values of extinction conditions like $45\sim65%,\;5\sim7mL/g$ and $5\sim7$ hr, respectively.

Enzymatic Synthesis of Ethyl Butyrate Using Ester Synthetase Derived from Banana Peel and Pineapple Peel (바나나 껍질과 파인애플 껍질 Ester Synthetase를 이용한 Ethyl Butyrate의 효소적 합성)

  • Yoon, Ki-Hong;Kim, Kee-huck;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1122-1127
    • /
    • 2017
  • Currently, the consumer trends are increasing towards "natural" in all food systems. Therefore, in the flavor industry, the production of flavor esters by "natural" methods are needed. On the other hand, "natural flavor" is expensive to produce because of the limited natural source. Recently, the flavor obtained from the enzyme or microbial could be represented as "natural flavor". Ethyl butyrate is used most frequently as a fruity aroma in drinks and the processed food industry. In this study, ethyl butyrate was synthesized enzymatically using the ester synthetase obtained from the waste of pineapple and banana peel. The ethyl butyrate production optimization was analyzed using a response surface methodology. The enzyme reaction variances were composed of the ethanol content, butyric acid content, and reaction time. As a result, in ester synthetase obtained from banana peel, the maximum predicted production amounts were 45.8199 mM at an ethanol content of 38.7050 mM, butyric acid content of 50.9019 mM, and reaction time of 4.3662 h. In ester synthetase obtained from pineapple peel, the maximum predicted production was 65.1087 mM at an ethanol content of 54.6502 mM, butyric acid content of 58.7638 mM, and reaction time of 4.7436 h. In conclusion, ethyl butyrate production was shown the more useful using the ester synthetase obtained from pineapple peel than that from banana peel.

Processing Optimization and Physicochemical Characteristics of Collagen from Scales of Yellowfin Tuna (Thunnus albacares)

  • Han, Yuna;Ahn, Ju-Ryun;Woo, Jin-Wook;Jung, Cheol-Kyun;Cho, Sueng-Mock;Lee, Yang-Bong;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.102-111
    • /
    • 2010
  • This study was conducted to investigate the optimal conditions of collagen extraction from scales of yellowfin tuna (Thunnus albacares) using surface response methodology. Four independent variables of NaOH concentration and pretreatment fime in alkali pretreatment and enzyme concentration and treatment time in enzyme hydrolysis were used to predict a model equation for the collagen yield. The determinant coefficient ($R^2$) for the equation was 0.906. The values of the independent variables for the maximum yield were 0.32 N NaOH, 16.38 h alkali pretreatment time, 0.18% enzyme concentration, and 31.02 h enzyme treatment time. In the physicochemical properties of tuna scale collagen, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of tuna scale collagen showed the same migration distances as that of calf skin collagen. The amide A, I, II, and III regions of tuna scale collagen in Fourier transform infrared measurements were shown in the peaks of 3,414 $cm^{-1}$, 1,645 $cm^{-1}$, 1,553 $cm^{-1}$, and 1,247 $cm^{-1}$, respectively. The amount of imino acids in tuna scale collagen was 18.97% and the collagen denaturation temperature was $33^{\circ}C$. The collagen solubility as a function of NaCl concentration decreased to 4% NaCl (w/v) and the collagen solubility as a function of pH was high at pH 2-4 and sharply decreased from pH 4 to pH 7. Viscosity of the collagen solution decreased continuously until $30^{\circ}C$ and this decreasing rate slowed in the temperature range of $35-50^{\circ}C$.

Processing of Functional Enzyme-hydrolyzed Sauce from Anchovy Sauce and Soy Sauce Processing By-products 1. Optimization of Hydrolysis Conditions by Response Surface Methodology (멸치액젓 및 간장 가공부산물을 이용한 기능성 효소분해간장의 제조 1. 반응표면분석법에 의한 가수분해물 제조조건의 최적화)

  • Kim, Hun;Lee, Jung-Suck;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.653-657
    • /
    • 2002
  • The hydrolysis conditions (enzym $e_strate ratio, time and temperature) of the mixture of anchovy sauce residue (ASR) and soy sauce residue (SSR) after fermentation by Flavourzyme 500M $G^{TM}$ were optimized using response surface methodology (RSM) for pretreatment of processing functional enzyme-hydrolyzed sauce. A model equation obtained from RSM was hydrolysis ratio (%) = 28.157+1.929enzym $e_strate ratio+1.818time+2.038temperature-1.093temperatur $e^2$, whose stationary point showed saddle point. From the ridge analysis of the saddle point, the conditions producing the highest hydrolysis ratio was determined as follows: 0.49% enzym $e_strate ratio; 3.55hr hydrolysis time; 62.5$^{\circ}C$ hydrolysis temperature. Adding of SSR to the mixture of water and ASR improved sensory qualities of mixture, so it seemed that SSR has masking effects on off-flavor and taste of ASR.R.of ASR.R.