• Title/Summary/Keyword: response surface design

Search Result 1,831, Processing Time 0.037 seconds

Slope Rotatability Over All Directions and Average Slope Variance in Spherical Surface

  • Sim, Jung-Wook;Oh, Mi-Ra
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.415-426
    • /
    • 2000
  • Hader and Park (1978) introduced the idea of slope rotatability, and Park (1987) introduced the concept of slope rotatability over all directions, and gave necessary and sufficient conditions. Park and Kim (1992) proposed a measure that represent the extent of slope rotatability for a given response surface design. Kim (1993) proposed a measure that represent the extent of slope rotatavility over all directions. In this paper, we embodied the measure of slope rotatability over all directions. Examples of applying this measure to some response surface designs are also given. In this response surface design of slope rotatavility over all directions, we obtain the mean slope variances on the spherical surface to select better experimental design varying the number of center points and radius.

  • PDF

Optimum Design on Reduction of Torque Ripple for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 최적설계)

  • Park Seong-June;Lee Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • This paper deals with the optimum design solution on reduction of torque ripple for a Synchronous Reluctance Motor with concentrated winding using response surface methodology. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, open width of slot, slot depth, teeth width variation in concentrated winding SynRM, respectively. This paper presents an optimization procedure using Response Surface Methodology (RSM) to determine design parameters for reducing torque ripple. RSM has been achieved to use the experimental design method in combination with finite Element Method (FEM) and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

Robust Design of Mechanisms Using the Response Surfae Analysis (반응표면분석법을 이용한 기구의 강건설계)

  • 한형석;박태원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.743-748
    • /
    • 1996
  • In this study a method for a robust design of mechanisms is proposed. The method used in the experimental anlysis and quqlity engineering is applied for mechanisms design. A mathematical model for a mechanism is estimated by the responese surface analysis and the robust design can be carried out. The method can be applied for mechanisms generally. Furthermore because the method can be used in the design stage using the computer model, improved quality and lower cost of the product is achieved even in the design stage.

  • PDF

Optimal Structural Design and Fatigue Analysis of Radius Rod by Response Surface Method (반응표면법에 의한 레디어스로드 최적구조설계 및 피로해석)

  • Park, Sohyeon;Kim, Eunsung;Oh, Sangyeob;Yu, Hyosun;Yang, Sungmo;Kim, YongKwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • This paper aims to obtain the effect of lightweight on Radius rod. The response surface method used in the paper is the statistical method. Optimization method is performed with the Radius rod using the lightweight material. Structural analysis is executed by using the ANSYS program to find static and dynamic responses. From this study result, it is verified that the response surface method has the advantage of optimum value in comparison with other optimization methods. The analysis is also performed by response surface method to derive optimal design values. Steel model and aluminium initial model are obtained by finite element analysis to clarify design criteria and the results are compared with three models each other. The weights can be reduced by optimal design analysis results of these models similar to those of existing products. The quantitative goals in this study can also attained through results of fatigue analyses. The reliability on optimal design of Radius rod can be improved by use of structural and fatigue analysis results.

Statistical Analysis and Prediction for Behaviors of Tracked Vehicle Traveling on Soft Soil Using Response Surface Methodology (반응표면법에 의한 연약지반 차량 거동의 통계적 분석 및 예측)

  • Lee Tae-Hee;Jung Jae-Jun;Hong Sup;Km Hyung-Woo;Choi Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.54-60
    • /
    • 2006
  • For optimal design of a deep-sea ocean mining collector system, based on self-propelled mining vehicle, it is imperative to develop and validate the dynamic model of a tracked vehicle traveling on soft deep seabed. The purpose of this paper is to evaluate the fidelity of the dynamic simulation model by means of response surface methodology. Various statistical techniques related to response surface methodology, such as outlier analysis, detection of interaction effect, analysis of variance, inference of the significance of design variables, and global sensitivity analysis, are examined. To obtain a plausible response surface model, maximum entropy sampling is adopted. From statistical analysis and prediction for dynamic responses of the tracked vehicle, conclusions will be drawn about the accuracy of the dynamic model and the performance of the response surface model.

Application of the Central Composite Design and Response Surface Methodology to the Treatment of Dye Using Electrochemical Oxidation (전기화학적 산화를 이용한 염료 처리에 중심합성설계와 반응표면분석법의 적용)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1225-1234
    • /
    • 2009
  • The aim of this research was to apply experimental design methodology in the optimization condition of electrochemical oxidation of Rhodamine B(RhB). The reactions of electrochemical oxidation were mathematically described as a function of parameters amounts of current, NaCl dosage, pH and time being modeled by the use of the central composite design, which was used for fitting quadratic response surface model. The application of response surface methodology using central composite design(CCD) technique yielded the following regression equation, which is an empirical relationship between the removal efficiency of RhB and test variable in actual variables: RhB removal (%) = 3.977 + 23.279$\cdot$Current + 49.124$\cdot$NaCI - 5.539$\cdot$pH - 8.863$\cdot$time - 22.710$\cdot$Current$\cdot$NaCl + 5.409$\cdot$Current$\cdot$time + 2.390$\cdot$NaCl$\cdot$time + 1.061$\cdot$pH$\cdot$time - $0.570{\cdot}time^2$. The model predicted also agree with the experimentally observed result($R^2$ = 91.9%).

Optimized Mixing Design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar by Response Surface Analysis (반응표면분석법에 의한 탄소포집 활성 고로슬래그 모르타르의 최적배합 도출에 관한 연구)

  • Jang, Bong Jin;Park, Cheol woo;Kim, Seung Won;Ju, Min Kwan;Park, Ki Tae;Lee, Sang Yoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.69-78
    • /
    • 2013
  • PURPOSES : In this study blast furnace slag, an industrial byproduct, was used with an activating chemicals, $Ca(OH)_2$ and $Na_2SiO_3$ for carbon capture and sequestration as well as strength development. METHODS : This paper presents the optimized mixing design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. RESULTS : The influencing factors of experimental are water ratio, Chemical admixture ratio and Curing temperature. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar were water ratio 40%, Chemical admixture ratio 58.78% and Curing temperature of $60^{\circ}C$. CONCLUSIONS : Compared with previous studies of this experiment is to some extent the optimal combination is expected to be reliable.

A MEASURE OF ROBUST ROTATABILITY FOR SECOND ORDER RESPONSE SURFACE DESIGNS

  • Das, Rabindra Nath;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.557-578
    • /
    • 2007
  • In Response Surface Methodology (RSM), rotatability is a natural and highly desirable property. For second order general correlated regression model, the concept of robust rotatability was introduced by Das (1997). In this paper a new measure of robust rotatability for second order response surface designs with correlated errors is developed and illustrated with an example. A comparison is made between the newly developed measure with the previously suggested measure by Das (1999).

Optimal Design of Impeller Shroud for Centrifugal Compressor Using Response Surface Method (반응표면법을 이용한 원심압축기 임펠러 쉬라우드 형상최적설계)

  • Kang, Hyun-Su;Hwang, In-Ju;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • In this study, a method for optimal design of impeller shroud for centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was studied. Numerical simulation was conducted using ANSYS CFX with various configurations of shroud. Each of the design parameters was divided into 3 levels. Total 15 design points were planned by central composite design (CCD) method, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of DOE were used to find the optimal shape of impeller shroud for high aerodynamic performance. The whole process of optimization was conducted using ANSYS Design Xplorer (DX). Results showed that the isentropic efficiency, which is the main performance parameter of the centrifugal compressor, was increased 0.4% through the optimization.

Optimization of Voice Coil Motors for a Small Guided Missile Fin Actuator (소형 유도무기 날개 작동기용 보이스 코일 모터의 최적 설계)

  • Lee, Choong Hee;Kim, Gwang Tae;Lee, Byung Ho;Cho, Young Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.59-65
    • /
    • 2019
  • In this study, optimal design of direct-drive VCMs (Voice Coil Motor) for a missile fin actuator is carried out. The torque performance and the characteristics of the VCM are predicted by commercial electromagnetic analysis software, ANSYS Maxwell. The optimal design is obtained at the minimum and maximum actuating angles where the aerodynamic load acting on the fin is the largest in the operating range. The critical variables of the actuator is designed and the RSM (Response Surface Method) is used for the optimization. The response surface model consists of second-order functions and its experimental points are selected by a central composite design. This design is widely used for fitting a second-order response surface. The adjustment regression coefficients is computed for adequacy checking of the response surface model. Finally, the torque values obtained by the RSM and the ANSYS Maxwell are shown in good agreement.