• Title/Summary/Keyword: response reconstruction

Search Result 152, Processing Time 0.027 seconds

Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning

  • Jun, Li;Zhengyan, He;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.687-701
    • /
    • 2022
  • Inevitable response loss under complex operational conditions significantly affects the integrity and quality of measured data, leading the structural health monitoring (SHM) ineffective. To remedy the impact of data loss, a common way is to transfer the recorded response of available measure point to where the data loss occurred by establishing the response mapping from measured data. However, the current research has yet addressed the structural condition changes afterward and response mapping learning from a small sample. So, this paper proposes a novel data driven structural response reconstruction method based on a sophisticated designed generating adversarial network (UAGAN). Advanced deep learning techniques including U-shaped dense blocks, self-attention and a customized loss function are specialized and embedded in UAGAN to improve the universal and representative features extraction and generalized responses mapping establishment. In numerical validation, UAGAN efficiently and accurately captures the distinguished features of structural response from only 40 training samples of the intact structure. Besides, the established response mapping is universal, which effectively reconstructs responses of the structure suffered up to 10% random stiffness reduction or structural damage. In the experimental validation, UAGAN is trained with ambient response and applied to reconstruct response measured under earthquake. The reconstruction losses of response in the time and frequency domains reached 16% and 17%, that is better than the previous research, demonstrating the leading performance of the sophisticated designed network. In addition, the identified modal parameters from reconstructed and the corresponding true responses are highly consistent indicates that the proposed UAGAN is very potential to be applied to practical civil engineering.

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.

Inverse Reconstruction of Sectional Area in Nonuniform Ducts by Using the Acoustical Measurement (음파를 이용한 덕트 내 불균일 단면적의 역문제적 재구성)

  • 김회전;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.9-16
    • /
    • 2001
  • This paper deals with the inverse reconstruction of sectional area in nonuniform ducts by using the acoustical measurement. There have been many theoretical and experimental studies on the duct area reconstruction. In this research, the method using the impulse response function and area reconstruction algorithm was employed because of its mathematical and experimental simplicity. Based on the study results on the drawback of conventional impulse excitation method, a new measurement method is proposed, that uses the random noise source and the discrete inverse Fourier transform. It is found that the reconstruction errors of the present method is smaller than the conventional method. A random error analysis is performed in order to investigate the causes of reconstruction error and to clarify the applicable data range for area reconstruction.

  • PDF

The Study of the System Response Time and Overshoot Control using Characteristic Ratio Assignments (특성비 지정법에 의한 시스템 응답속도 및 Overshoot 제어)

  • Kim, Han-Sil;Kim, Dae-Kwan;Rho, Hi-An
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.870-879
    • /
    • 2005
  • This paper presents that a transient response can be characterized by certain parameters which are correlated to characteristic polynomial coefficients. These are characteristic ratios and characteristic pulsatances by P. Naslin [4]. We have developed an approach to control directly the transient response. Firstly, speed of the response can be controlled by reconstruction form via multipliable characteristic pulsatances. Secondly, overshoot is controlled by reconstruction form via multipliable characteristic ratios. These formulas can be independently characterized by the system overshoot and the response time to a step input.

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Long-Term Wildfire Reconstruction: In Need of Focused and Dedicated Pre-Planning Efforts

  • Harris, William S.;Choi, Jin Ouk;Lim, Jaewon;Lee, Yong-Cheol
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.923-928
    • /
    • 2022
  • Wildfire disasters in the United States impact lives and livelihoods by destroying private homes, businesses, community facilities, and infrastructure. Disaster victims suffer from damaged houses, inadequate shelters, inoperable civil infrastructure, and homelessness coupled with long-term recovery and reconstruction processes. Cities and their neighboring communities require an enormous commitment for a full recovery for as long as disaster recovery processes last. State, county, and municipal governments inherently have the responsibility to establish and provide governance and public services for the benefit and well being of community members. Municipal governments' comprehensive and emergency response plans are the artifacts of planning efforts that guide accomplishing those duties. Typically these plans include preparation and response to natural disasters, including wildfires. The standard wildfire planning includes and outlines (1) a wildfire hazard assessment, (2) response approaches to prevent human injury and minimize damage to physical property, and (3) near- and long-term recovery and reconstruction efforts. There is often a high level of detail in the assessment section, but the level of detail and specificity significantly lessons to general approaches in the long-term recovery subsection. This paper aims to document the extent of wildfire preparedness at the county level in general, focusing on the long-term recovery subsections of municipal plans. Based on the identified challenges, the researchers provide recommendations for better longer-term recovery and reconstruction opportunities: 1) building permit requirements, 2) exploration of the use of modular construction, 3) address through relief from legislative requirements, and 4) early, simple, funding, and the aid application process.

  • PDF

Reconstruction of missing response data for identification of higher modes

  • Shrikhande, Manish
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.323-336
    • /
    • 2011
  • The problem of reconstruction of complete building response from a limited number of response measurements is considered. The response at the intermediate degrees of freedom is reconstructed by using piecewise cubic Hermite polynomial interpolation in time domain. The piecewise cubic Hermite polynomial interpolation is preferred over the spline interpolation due to its trend preserving character. It has been shown that factorization of response data in variable separable form via singular value decomposition can be used to derive the complete set of normal modes of the structural system. The time domain principal components can be used to derive empirical transfer functions from which the natural frequencies of the structural system can be identified by peak-picking technique. A reduced-rank approximation for the system flexibility matrix can be readily constructed from the identified mass-orthonormal mode shapes and natural frequencies.

Secret Sharing based Node Authentication in FANET (FANET에서의 비밀분산 기반 노드 인증)

  • Yang Ji Hun;Lee Soo Jin
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.25-34
    • /
    • 2022
  • This paper proposes a secret sharing based fast node authentication technique applicable to Flying Ad-Hoc Network (FANET) that can be used to construct self-organized communication network in multi drones and drone squadrons operations. Before deployment, each node stores an exponential share, exponential secret and a portion of PUF CRP table. After being deployed in the field, in the early-stage of network formation, each node broadcasts its ID, exponential share and a hash value of PUF Response and pseudo-random number. Then each node performs a reconstruction of the exponential secret using the exponential shares transmitted from neighboring nodes. When the exponential secret is reconstructed, simultaneous authentication is completed for all nodes that have transmitted the exponential share used in the reconstruction. A node that transmits an incorrect exponential share to disturb the reconstruction of the exponential secret during the authentication process can be detected before performing the reconstruction through the verification of the hash value, and will be excluded from the reconstruction.

Structural Dynamic System Reconstruction (구조물 동적시스템 재현기법)

  • Kim, Hyeung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.308-312
    • /
    • 2002
  • To determine the natural frequencies and damping ratios of composite laminated plates, we present an officient modal parameter estimation technique by developing residual spectrum based structural system reconstruction. The modal parameters can be estimated from poles and residues of the system transfer functions, derived from the state space system matrices. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the modal coordinates of the structural dynamic system reconstructed from the experimental frequency response functions. These results are compared with those of finite element analysis and single-degree-of-freedom curve fitting.

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF