• Title/Summary/Keyword: response displacement method (RDM)

Search Result 5, Processing Time 0.018 seconds

Seismic response of vertical shafts in multi-layered soil using dynamic and pseudo-static analyses

  • Kim, Yongmin;Lim, Hyunsung;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.269-277
    • /
    • 2020
  • In this study, numerical analyses were conducted to investigate the load transfer mechanisms and dynamic responses between the vertical shaft and the surrounding soil using a dynamic analysis method and a pseudo-static method (called response displacement method, RDM). Numerical solutions were verified against data from the literature. A series of parametric studies was performed with three different transient motions and various surrounding soils. The results showed that the soil stratigraphy and excitation motions significantly influenced the dynamic behavior of the vertical shaft. Maximum values of the shear force and bending moment occurred near an interface between the soil layers. In addition, deformations and load distributions of the vertical shaft were highly influenced by the amplified seismic waves on the vertical shaft constructed in multi-layered soils. Throughout the comparison results between the dynamic analysis method and the RDM, the results from the dynamic analyses showed good agreement with those from the RDM calculated by a double-cosine method.

Conservativeness of Response Displacement Method used in Seismic Response Analysis of Power Cable Tunnels (전력구의 지진응답해석법에 사용되는 응답변위법의 보수성 평가)

  • Lim, Jae-Sung;Yang, Dae-Seung;Hwang, Kyeong-Min;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.243-254
    • /
    • 2021
  • In this study, the conservatism of the response displacement method (RDM) for the seismic response analysis of box-shaped power cable tunnels was evaluated. A total of 50 examples were used considering the cross-sections of 25 power cable tunnels and two soil conditions for each power cable tunnel. The following three methods were applied for the analysis by the RDM: (1) single cosine method, (2) double cosine method, and (3) dynamic free-field analysis method. A refined dynamic analysis method considering soil-structure interaction (SSI) was employed to compare the conservatism of the RDM. The double cosine method demonstrated the most conservative result, while the dynamic free-field analysis method yielded the least deviation. The soil stiffness reduction factor, C, for the double cosine method was recommended to be 0.9 and 0.7 for the operational performance and collapse prevention levels, respectively, to ensure a probability of at least 80% that the member force by the RDM is larger than that of dynamic SSI analysis.

Modification of Response Displacement Method for Seismic Design of Underground Structures under Domestic Conditions (국내 특성이 반영된 지하구조물의 내진설계를 위한 수정응답변위법)

  • 김명철;김영일;조우연;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.83-93
    • /
    • 2004
  • In this study. the Modified Response Displacement Method(MRDM) for seismic design of underground box-type structures is proposed. Firstly, to investigate the applicability of the conventional RDM, various parametric studies are performed according to buried depth and soil conditions. Results from the conventional RDM are compared with those of time history analysis in terms of the maximum bending moment and relative displacement. The comparison shows that the velocity response spectrum and the determination method of foundation modulus which significantly influence the accuracy of RDM should be modified. Thus, the modified velocity response spectrum and the new determination method of foundation modulus are proposed under consideration of domestic conditions. In order to demonstrate the accuracy and validity of the proposed MRDM numerical analyses are performed according to different parameters such as depth of base rock, height and width of box, buried depth and soil condition. the comparison with the results of the time history analysis verifies the feasibility of the proposed MRDM for the seismic analysis.

Seismic Design of Vertical Shaft using Response Displacement Method (응답변위법을 적용한 수직구의 내진설계)

  • Kim, Yong-Min;Jeong, Sang-Seom;Lee, Yong-Hee;Jang, Jung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.241-253
    • /
    • 2010
  • For seismic design of a vertical shaft, three-dimensional Finite Element (FE) analyses were performed to evaluate the accurate response of a vertical shaft and to apply a Response Displacement Method (RDM). Special attention is given to the evaluation of seismic base and response displacement of surrounding soil, estimation of load and loading method. Based on the result, it was found that shear wave velocity of seismic base greater than 1500m/s was appropriate for the seismic design. It was also found that double cosine method which evaluates a response displacement of surrounding soil was most appropriate to consider the characteristic of multi-layered soil. Finally, shape effect of the structure was considered to clarify the dynamic behavior of vertical shaft and it would be more economical vertical shaft design when a vertical shaft was analyzed by using RDM.

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.