• Title/Summary/Keyword: response compaction

Search Result 42, Processing Time 0.027 seconds

Numerical Simulation of Cold Compaction of 3D Granular Packings

  • Chen, Yuan;Imbault, Didier;Doremus, Pierre
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.189-190
    • /
    • 2006
  • During cold compaction processes loose powder is pressed under tooling action in order to produce complex shaped engineering components. Here, the analysis of the plastic deformation of granular packings is of fundamental importance to the development of computer simulation models. Powders can be idealized by packing discrete particles, where each particle is a sphere meshed with finite elements. The pressing of a body centered cubic packing was compared with numerical prediction and experimental data. The global response was expressed in force-displacement curve, and the accuracy of the numerical models analyzed for high relative densities up to 0.95.

  • PDF

Compaction process in concrete during missile impact: a DEM analysis

  • Shiu, Wenjie;Donze, Frederic-Victor;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.329-342
    • /
    • 2008
  • A local behavior law, which includes elasticity, plasticity and damage, is developed in a three dimensional numerical model for concrete. The model is based on the Discrete Element Method (DEM)and the computational implementation has been carried out in the numerical Code YADE. This model was used to study the response of a concrete slab impacted by a rigid missile, and focuses on the extension of the compacted zone. To do so, the model was first used to simulate compression and hydrostatic tests. Once the local constitutive law parameters of the discrete element model were calibrated, the numerical model simulated the impact of a rigid missile used as a reference case to be compared to an experimental data set. From this reference case, simulations were carried out to show the importance of compaction during an impact and how it expands depending on the different impact conditions. Moreover, the numerical results were compared to empirical predictive formulae for penetration and perforation cases, demonstrating the importance of taking into account the local compaction process in the local interaction law between discrete elements.

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.

The Effect of Ti Powder addition on Compaction Behavior of TiO2 Nano Powder (Ti 분말 첨가가 TiO2 나노 분말의 성형성에 미치는 영향)

  • Park, Jin-Sub;Kim, Hyo-Seob;Lee, Ki-Seok;Lee, Jeong-Goo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.223-230
    • /
    • 2009
  • The compaction response of $TiO_2$ nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and $1400^{\circ}C$ sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered $TiO_2$. But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and $1400^{\circ}C$, respectively.

A Development on the Non-Destructive Testing Equipment for the Compaction Control and the Evaluation of Pavements Properties (지반물성추정 및 다짐관리를 위한 비파괴시험장비의 개발)

  • 최준성;김인수;유지형;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.385-390
    • /
    • 2000
  • In this study, the Non-Destructive Testing Equipment was introduced for the compaction control and the evaluation of pavements properties and the developing process was showed. Falling Weight Deflectometer(FWD) is a system for performing non-destructive testing of pavement and the other foundation structures. The system develops forces from the acceleration caused by the arrest of a falling weight and these forces are transmitted onto the surface of a structure causing it to deflect much as it would due to the weight of a passing wheel load. The structure will bend downward and exhibit a deflection basin. FWD uses a set of velocity sensors to determine the amplitude and shape of the deflection basin. The deflection response, when related to the applied loading, can provide information about the strength and condition of the various elements of the test structure. In this study, a computer program was developed that can be used to evaluate pavement and foundation structures from the data produced by FWD. The Falling Weight Deflectometer, non-destructive testing equipment, is increasing used at the whole world.

  • PDF

An analytical solution for compaction grouting problem considering exothermic temperature effect of slurry

  • Chao Li;Yingke Liu;Man Yuan;Tengrui Yang
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.593-601
    • /
    • 2023
  • In this paper, an analytical solution of large-strain cylindrical cavity expansion in compaction grouting problem under temperature field is given. Considering the stress increment caused by temperature, the analytical solution of cavity expansion under traditional isothermal conditions is improved by substituting the temperature stress increment into the cavity expansion analysis. Subsequently, combined with the first law of thermodynamics, the energy theory is also introduced into the cylindrical cavity expansion analysis, and the energy dissipation solution of cylindrical cavity expansion is derived. Finally, the validity and reliability of solution are proved by comparing the results of expansion pressure with those in published literatures. The results show that the dimensionless expansion pressure increases with the increase of temperature, and the thermal response increases with the increase of dilation angle. The higher the exothermic temperature of grouting slurry, the greater the plastic deformation energy of the surrounding soil, that is, the greater the influence on the surrounding soil deformation and the surrounding environment. The proposed solution not only enrich the theoretical system of cavity expansion, but also can be used as a theoretical tool for energy geotechnical engineering problems, such as CPT, nuclear waste disposal, energy pile and chemical grouting, etc.

Theoretical Study on the Consolidation Behavior and Mechanical Property for Molybdenum Powders (몰리브데늄 분말의 치밀화 거동 및 기계적 물성의 이론적 연구)

  • Kim, Young-Moo
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at $1400-1600^{\circ}C$ for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.

Soil Compaction of Hiking Trails Induced by Human Trampling in Mt. Halla and Darangshiorum (한라산과 다랑쉬오름 등산로의 답압에 의한 토양 압밀현상)

  • Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.2
    • /
    • pp.169-179
    • /
    • 2003
  • The hardness and physical properties of soils were measured in hiking trails of Mt. Halla and Darangshiorum in Jeju Island to examine the characteristics and formative factors of an aquiclude induced by human trampling. The soil hardness, being generally the highest on trails, decreases outward and shows the lowest on adjacent slopes in a natural condition. The bulk density and solid phase also demonstrates a similar tendency, then implying that the aquiclude occurs in the central part of trails. Although the formation of a hard layer in trails is fundamentally attributed to human trampling, the environmental factors such as landform, lithology, soil and vegetation play a role in the occurrence of the aquiclude. Soil compaction varies with the gradient and location of trails which affects a transport and deposition of soil particles to produce a hard layer. Soil compaction also depends on the physical properties of soils including the soil texture largely affected by lithology. Vegetation is not directly related with the formation of a hard layer, but affects its dimensions through an enlargement rate of bare trails depending on the response and resistance of plants to human trampling.

  • PDF

Effect of poorly-compacted backfill around embedded foundations on building seismic response

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.549-561
    • /
    • 2012
  • Many building foundations are embedded, however it is not easy to compact the backfill around the foundation especially for the deeply embedded ones. The soil condition around the embedded foundation may affect the seismic response of a building due to the weak contact between the soil and the foundation. In this paper, the response accelerations in the short-period range and at the period of 1 second (in the long-period range) for a seismic design spectrum specified in the IBC design code were compared considering perfect and poor backfills to investigate the effect of backfill compaction around the embedded foundation. An in-house finite-element software (P3DASS) which has the capability of horizontal pseudo-3D seismic analysis with linear soil layers was used to perform the seismic analyses of the structure-soil system with an embedded foundation. Seismic analyses were carried out with 7 bedrock earthquake records provided by the Pacific Earthquake Engineering Research Center (PEER), scaling the peak ground accelerations to 0.1 g. The results indicate that the poor backfill is not detrimental to the seismic response of a building, if the foundation is not embedded deeply in the soft soil. However, it is necessary to perform the seismic analysis for the structure-soil system embedded deeply in the soft soil to check the seismic resonance due to the soft soil layer beneath the foundation, and to compact the backfill as well as possible.

Analysis of the Correlation between Compaction Characteristics and Spectral Information of Reactive Materials for Absorption of Oil Contaminant (유류 오염물 흡수가 가능한 반응재료의 다짐 특성-분광정보 상관관계 분석)

  • Gigwon Hong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.950-957
    • /
    • 2023
  • Purpose: The response technology is needed to prevent the spill of highly toxic oil contaminants in advance. Therefore, this paper described the results of an experimental study to predict the engineering properties of the developed reactive material. Method: Compaction tests and spectral information acquisition experiments were conducted on the reactive materials, and the results were evaluated. In addition, the correlation between spectral information and maximum dry unit weight was analyzed to evaluate the possibility of predicting the engineering properties for reactive materials. Result: The compaction test results showed that the maximum dry unit weight was in the range of approximately 9kN/m3 to 10kN/m3. The spectral information confirmed that the maximum reflectance decreased as the polynorbornene decreased. Conclusion: It was confirmed that the maximum dry unit weight of the reactive material for absorbing oil contaminants can be predicted using the maximum reflectance according to the component ratio of the reactive material.