• Title/Summary/Keyword: respiratory motion

Search Result 170, Processing Time 0.046 seconds

A novel detection method of periodically moving region in radial MRI

  • Seo, Hyunseok;Park, HyunWook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.203-207
    • /
    • 2013
  • The appropriate handling of motion artifacts is essential for clinical diagnosis in magnetic resonance imaging (MRI). In many cases, motion is an inherent part of MR images because it is difficult to control during MR imaging. As the motion in the human body occur in a deformable manner, they are difficult to deal with. This paper proposes a novel detection method for periodically moving regions to produce MR images with less motion artifacts. When the data is acquired by the radial trajectory, the proposed method can extract the deformable region easily using the difference in the modulated sinograms, which have different periodic phase terms. The simulation results applied to the various cases confirmed the good performance of the proposed method.

  • PDF

Development of Error Analysis Program for Phase-based Respiratory Gating Radiation Therapy (위상기반 호흡연동 방사선치료 시 오차 분석 프로그램 개발)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.136-143
    • /
    • 2006
  • The respiratory gating radiation therapy which Irradiates only in the stable respiratory period with analyzing the periodic motion of a reflective marker on the patient's abdomen has been applied to the precise radiation treatment in order to minimize the effect of organ motion induced by the respiration. This respiratory gating system establishes irradiation region using the amplitude-based or phase-based method. Although phase-based method Is preferred because of the stability in the real treatment conditions, it has some limits to explain the exact correlation between the marker motion and organ motion. Even when the variation of amplitude which can introduce target motion considered as an error is produced, the phase-based method has the possibility to irradiate including the error positions. In this study, the error analysis program was developed for the verification of the tumor position's variation correlated with the variation of marker's amplitude which can be occurred during a phase-based respiratory sating treatment. The analysis program was tested with a virtual treatment record file and with a record file using moving phantom which were modified considering the irregular amplitude's variation simulating the real clinical situations. In both cases, accurate discrimination of error points and error calculation were produced. When the treatment record files of a real patient were analyzed with the program, the accurate recognition and calculation of the error points were also verified. The analysis program developed in this study will be applied as a useful tool for the analysis of errors due to the irregular variation of patients' respiration during the phase-base respiratory gating radiation treatment.

  • PDF

Analysis of the Respiratory Motion Effects on Dose Distribution Using TLD Phantom (열형광선량계용 팬톰을 이용한 호흡 움직임에 따른 선량분포의 평가)

  • Hong, Ju-Young;Kim, Yon-Lae;Rah, Jeong-Eun;Chung, Jin-Beom;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.187-191
    • /
    • 2006
  • The purpose of this study was to measure the dose distribution from the moving phantom for the respiratory motion. The phantom for TLD measurement was designed and built for this study based on the multiple plates for placing TLD and film. The TLDs may be inserted at 3 mm intervals in each TLD plate. For the measurements, TLD plate was inserted into the phantom at 1.5 cm ($d_{max}$) depth, and phantom was allowed to move in SI directions in the range of 1 to 2 cm with 0.5 cm interval for 6 MV X-ray beams. Penumbra and FWHM were measured at both moving state and compared stationary. It was found that penumbra increased 0.71 cm at stationary and 2.10 cm at moving state in 2 cm movement, and that FWHM are 7.52 cm for stationary state and 7.02 cm for moving state (2 cm movement). In this study, film was used to compared with TLD results of measurements and simitar results were observed. Therefore, it is expected that TLD moving phantom may be useful for the treatment of tumors that move due to the respiratory motion.

  • PDF

A Study on Locational Control of Motion Ghost in Magnetic Imaging System (자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究))

  • Lee, Who-Min
    • Journal of radiological science and technology
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF

The Study of Mechanical Simulation for Human Respiratory System (인체 호흡 모사를 위한 기계적 장치 연구)

  • Chi, S.H.;Lee, M.K.;Lee, T.S.;Choi, Y.S.;Oh, S.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • A patient with respiratory disorders such as a sleep apnea is increasing as the obese patient increase on the modern society. Positive Airway Pressure (PAP) devices are used in curing patient with respiratory disorders and turn out to be efficacious for patients of 75%. However, these devices are required for evaluating their performance to improve their performance by the mechanical breathing simulator. Recently, the mechanical breathing simulator was studied by the real time feedback control. However, the mechanical breathing simulator by an open loop control was specially required in order to analyze the effect of flow rate and pressure after operating the breathing auxiliary devices. Therefore the aims of this study were to make the mechanical breathing simulator by a piston motion and a valve function from the characteristic test of valve and motor, and to duplicate the flow rate and pressure profiles of some breathing patterns: normal and three disorder patterns. The mechanical simulator is composed cylinder, valve, ball screw and the motor. Also, the characteristic test of the motor and the valve were accomplished in order to define the relationship between the characteristics of simulator and the breathing profiles. Then, the flow rate and pressure profile of human breathing patterns were duplicated by the control of motor and valve. The result showed that the simulator reasonably duplicated the characteristics of human patterns: normal, obstructive sleep apnea (OSA), mild hypopnea with snore and mouth expiration patterns. However, we need to improve this simulator in detail and to validate this method for other patterns.

Multi-biological Signal-based Smart Trigger System for Cardiac MRI (다중 생체 신호를 이용한 심장 자기공명영상 스마트 트리거 시스템)

  • Yang, Young-Joong;Park, Jinho;Hong, Hye-Jin;Ahn, Chang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.945-949
    • /
    • 2014
  • In cardiac magnetic resonance imaging (CMRI), heart and respiratory motions are one of main obstacles in obtaining diagnostic quality of images. To synchronize CMRI to the physiological motions, ECG and respiratory gatings are commonly used. In this paper multi-biological signal (ECG, respiratory, and SPO2) based smart trigger system is proposed. By using multi-biological signal, the proposed system is robust to the induced noise such as eddy current when gradient pulsing is continuously applied during the examination. Digital conversion of the multi-biological signal makes the system flexible in implementing smart and intelligent algorithm to detect cardiac and respiratory motion and to reject arrhythmia of the heart. The digital data is used for real-time trigger, as well as signal display, and data storage which may be used for retrospective signal processing.

Evaluation of Real-time Measurement Liver Tumor's Movement and $Synchrony^{TM}$ System's Accuracy of Radiosurgery using a Robot CyberKnife (로봇사이버나이프를 이용한 간 종양의 실시간 움직임 측정과 방사선수술 시 호흡추적장치의 정확성 평가)

  • Kim, Gha-Jung;Shim, Su-Jung;Kim, Jeong-Ho;Min, Chul-Kee;Chung, Weon-Kuu
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.263-270
    • /
    • 2008
  • Purpose: This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system ($Synchrony^{TM}$). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and $13.9{\pm}5.5\;mm$, respectively from the superior to the inferior direction, 3.9 mm and $1.9{\pm}0.9mm$, respectively from left to right, and 8.3 mm and $4.9{\pm}1.9\;mm$, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be $3.3^{\circ}$ and $2.6{\pm}1.3^{\circ}$, respectively for X (Left-Right) axis rotation, $4.8^{\circ}$ and $2.3{\pm}1.0^{\circ}$, respectively for Y (Crania-Caudal) axis rotation, $3.9^{\circ}$ and $2.8{\pm}1.1^{\circ}$, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was $1.1{\pm}0.7\;mm$. Conclusion: In this study real-time movement of a liver tumor during the radiosurgery could be verified quantitatively and the accuracy of the radiosurgery with the Synchrony Respiratory motion tracking system of robot could be evaluated. On this basis, the decision of treatment volume in radiosurgery or conventional radiotherapy and useful information on the movement of liver tumor are supposed to be provided.

Development of New 4D Phantom Model in Respiratory Gated Volumetric Modulated Arc Therapy for Lung SBRT (폐암 SBRT에서 호흡동조 VMAT의 정확성 분석을 위한 새로운 4D 팬텀 모델 개발)

  • Yoon, KyoungJun;Kwak, JungWon;Cho, ByungChul;Song, SiYeol;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.100-109
    • /
    • 2014
  • In stereotactic body radiotherapy (SBRT), the accurate location of treatment sites should be guaranteed from the respiratory motions of patients. Lots of studies on this topic have been conducted. In this letter, a new verification method simulating the real respiratory motion of heterogenous treatment regions was proposed to investigate the accuracy of lung SBRT for Volumetric Modulated Arc Therapy. Based on the CT images of lung cancer patients, lung phantoms were fabricated to equip in $QUASAR^{TM}$ respiratory moving phantom using 3D printer. The phantom was bisected in order to measure 2D dose distributions by the insertion of EBT3 film. To ensure the dose calculation accuracy in heterogeneous condition, The homogeneous plastic phantom were also utilized. Two dose algorithms; Analytical Anisotropic Algorithm (AAA) and AcurosXB (AXB) were applied in plan dose calculation processes. In order to evaluate the accuracy of treatments under respiratory motion, we analyzed the gamma index between the plan dose and film dose measured under various moving conditions; static and moving target with or without gating. The CT number of GTV region was 78 HU for real patient and 92 HU for the homemade lung phantom. The gamma pass rates with 3%/3 mm criteria between the plan dose calculated by AAA algorithm and the film doses measured in heterogeneous lung phantom under gated and no gated beam delivery with respiratory motion were 88% and 78%. In static case, 95% of gamma pass rate was presented. In the all cases of homogeneous phantom, the gamma pass rates were more than 99%. Applied AcurosXB algorithm, for heterogeneous phantom, more than 98% and for homogeneous phantom, more than 99% of gamma pass rates were achieved. Since the respiratory amplitude was relatively small and the breath pattern had the longer exhale phase than inhale, the gamma pass rates in 3%/3 mm criteria didn't make any significant difference for various motion conditions. In this study, the new phantom model of 4D dose distribution verification using patient-specific lung phantoms moving in real breathing patterns was successfully implemented. It was also evaluated that the model provides the capability to verify dose distributions delivered in the more realistic condition and also the accuracy of dose calculation.

Development of Respiratory Motion Reduction Device System (RMRDs) for Radiotherapy in Moving Tumor: Construction of RMRDs and Patient Setup Verification Program

  • Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.86-89
    • /
    • 2002
  • The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF