• Title/Summary/Keyword: respiratory model

Search Result 434, Processing Time 0.033 seconds

Computational analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV genome using MEGA

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.30.1-30.7
    • /
    • 2020
  • The novel coronavirus pandemic that has originated from China and spread throughout the world in three months. Genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predecessor, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) play an important role in understanding the concept of genetic variation. In this paper, the genomic data accessed from National Center for Biotechnology Information (NCBI) through Molecular Evolutionary Genetic Analysis (MEGA) for statistical analysis. Firstly, the Bayesian information criterion (BIC) and Akaike information criterion (AICc) are used to evaluate the best substitution pattern. Secondly, the maximum likelihood method used to estimate of transition/transversions (R) through Kimura-2, Tamura-3, Hasegawa-Kishino-Yano, and Tamura-Nei nucleotide substitutions model. Thirdly and finally nucleotide frequencies computed based on genomic data of NCBI. The results indicate that general times reversible model has the lowest BIC and AICc score 347,394 and 347,287, respectively. The transition/transversions bias for nucleotide substitutions models varies from 0.56 to 0.59 in MEGA output. The average nitrogenous bases frequency of U, C, A, and G are 31.74, 19.48, 28.04, and 20.74, respectively in percentages. Overall the genomic data analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV highlights the close genetic relationship.

Relieving effect for respiratory inflammation of Gumiganghwal-tang (구미강활탕(九味羌活湯)의 호흡기 염증 완화효과)

  • Bo-In Kwon;Joo-Hee Kim
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.35-46
    • /
    • 2023
  • Objectives : Gumiganghwal-tang and its main components have been used for treatment of cough, headache, joint pain and fever. Using a respiratory inflammatory model, we intend to demonstrate the its anti-inflammatory effect and immune mechanism of Gumiganghwal-tang. Methods : We induced the respiratory inflammation mouse model by papain treatment. Female BALB/C mice (8 weeks old) were divided into three groups as follows: saline control group, papain treatment group (vehicle), papain and Gumiganghwal-tang (200 mg/kg) treatment group (n=4). To verify the anti-inflammatory effect of Gumiganghwal-tang extracts, we measured the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) and nasal lavage fluid (NALF). Additionally, the efficacy of Gumiganghwal-tang extracts on Th2 cell population and alveolar macrophage in lung were analyzed by using flow cytometry. Results : Gumiganghwal-tang extracts administration decreased inflammatory cell infiltration in BALF and NALF, especially of eosinophils. Furthermore, interleukin-5 level was reduced in lung by drug administration. Interestingly, Gumiganghwal-tang extracts treatment also decreased the Th2 cell (CD4+GATA3+) population and increased the alveolar macrophage (CD11b+CD11c+) population in lung. Conclusions : Our findings indicate that Gumiganghwal-tang extracts have anti-inflammatory effects by mediating Th2 cell and alveolar macrophage cell activation.

Development of Atopic Dermatitis Mouse Model with Spleen Deficiency (비허형 아토피 동물모델 개발)

  • Yang, Won Kyung;Lyu, Yee Ran;Kim, Ho Kyoung;Kim, Seung Hyeong;Park, Yang Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.213-219
    • /
    • 2017
  • Atopic dermatitis (AD) is a common skin disease characterized by chronic and relapsing inflammatory dermatitis with immunological disturbances. Spleen deficiency (脾虛) is one of the major causes of AD, so development of animal model is required for AD research that reflects the pattern identification. The groups that we have used in this study included Senna folium extracts (SFE), 2,4-dinitrochlorobenzene (DNCB), and normal mice. Therefore, the present study was developed to atopic dermatitis mouse model with spleen deficiency in 2,4-dinitrochlorobenzene (DNCB) and senna leaves extracts induced AD in NC/Nga mice. The results demonstrated that senna leaves extract treatment significantly increased the dermatitis clinical score and epidermal thickness in AD-like skin lesions. We also proved beyond doubt that there was occurrence of erythema and skin moisture indices in the senna leaves extract groups. Further, we also found that the level of serum immunoglobulin E (IgE) in the senna leaves extract-treated group was increased. The amount of IL-4, IL-13, $TNF-{\alpha}$ and $TGF-{\beta}$ mRNA determined by real-time PCR was increased remarkably when senna leaves extract groups were treated on dorsal skin. Senna leaves extract groups significantly promoted the number of CD11B+/Gr-1 cell in skin, as well as the number of CD4+/CD8+ cell in dorsal skin compared with control. The review summarizes recent process in our understanding of the immunopathophysiology of spleen deficiency AD and the implications for spleen deficiency mouse models of AD on drug discovery from medical plants.

Knowledge and Behavior of Visitors in the Prevention of Respiratory Tract Infections in an Emergency Service, Hospital (응급의료센터 내원객의 호흡기 감염예방에 대한 지식과 수행도)

  • Jo, Myeong-Ji;Moon, Kyoung-Ja;Lee, Eunsuk
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.25 no.3
    • /
    • pp.210-219
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effects of emergency setting visitors' knowledge and behavior patterns in relation to prevention of respiratory tract infections. Methods: A descriptive survey was used. The participants were visitors to the emergency service in 'D' general hospital in 'D' city, and the data were collected from July 1 to September 1, 2016. The collected data were analyzed using frequency analysis, t-test, ANOVA, $Scheff{\acute{e}}$ test, Pearson correlation coefficients, and multiple regression analysis. Results: Factors influencing prevention of respiratory tract infections were visitors' education level, methods of dissemination of prevention information, and participants' knowledge with regard to preventive methods. The explanatory power was found to be 35% in the regression model. Conclusion: The findings indicate that visitors' education level, knowledge of infection prevention, and the dissemination of information regarding infection prevention by the hospital play an important role in the prevention of respiratory tract infections in emergency services in the hospital. These results highlight the need for a customized education program for prevention of respiratory tract infections in emergency settings. Programs should take into consideration the educational background of visitors, and provide them with appropriate information regarding infection prevention.

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

Predictive Factors Affected to Forced Vital Capacity in Children with Cerebral Palsy (뇌성마비 아동에서 노력성 폐활량에 영향을 미치는 요인 분석에 관한 연구)

  • Nam, Ki Seok;Lee, Hye Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.4
    • /
    • pp.204-209
    • /
    • 2013
  • Purpose: Children with cerebral palsy generally have a high incidence of respiratory problem, resulted from poor coughing, airway clearance problem, respiratory muscle weakness, kyphoscoliosis and so forth. The purpose of this study is to investigate the possible factors that can be affected to forced vital capacity (FVC) in children with cerebral palsy. Methods: Total thirty six children with diplegic and hemiplegic cerebral palsy were recruited in this study. They were evaluated by general demographic data (i.e., age, gender, body mass index (BMI)) and variables related to respiratory functions (i.e., chest mobility, waist mobility, maximal phonation time, and maximum inspiratory/expiratory pressure (MIP/MEP)). The correlation between forced vital capacity and the rested variables were analyzed, and multiple regression with stepwise method was conducted to predict respiratory function, in terms of FVC as the dependent variable, and demographic and other respiratory variables as the independent variable. Results: FVC showed a significant correlation with waist mobility (r=0.59, p<0.01), maximal phonation time (r=0.48, p<0.05), MIP (r=0.73, p<0.01), and MEP (r=0.60, p<0.01). In addition, the multiple regression analysis model indicated that FVC could be predicted by the assessment of each waist mobility and MIP. Conclusion: These finding suggest that respiratory function is related to body size and respiratory muscle strength, and that BMI, waist mobility, and MIP can be predictable factors to affected respiratory function in term of FVC.

Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation

  • Won-Kyung Yang;Sung-Won Kim;Soo Hyun Youn;Sun Hee Hyun;Chang-Kyun Han;Yang-Chun Park;Young-Cheol Lee;Seung-Hyung Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • Background: Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods: Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 ㎛) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results: KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.

Effects of Root of Curcumin longa on LPS-induced Lung Injury (강황이 LPS로 유도된 폐손상에 미치는 영향)

  • Oh, Ji-Seok;Yang, Su-Young;Kim, Min-Hee;Namgung, Uk;Park, Yang-Chun
    • The Journal of Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.89-102
    • /
    • 2013
  • Objectives: This study aimed to evaluate the effects of root of Curcumin longa (RCL) on LPS-induced COPD (chronic obstructive pulmonary disease) model. Materials and Methods: Extract of RCL was treated to RAW 264.7 cells and LPS-induced COPD mouse model. Then, various parameters such as cell-based protective activity, airflow limitation, accumulation of immune cells and histopathological finding were analyzed. Results: RCL showed a protective effect on LPS-induced cytotoxicity in RAW 264.7 cells. RCL treatment also revealed a protective effect on LPS-induced lung injury in a COPD mouse model. This effect was demonstrated via the reduction of accumulation of immune cells and pathophysiological regulation of caspase 3, elastin and collagen in lung tissue. Conclusions: These data suggest that RCL has a pharmaceutical property on lung injury. This study provides scientific evidence for the efficacy of RCL for clinical application to COPD patients.

Correction of MRI Artifact due to Planar Respiratory Motion (호흡운동에 의한 MRI 아티팩트의 수정)

  • 김응규;김규헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1863-1866
    • /
    • 2003
  • In this study, respiratory motion is modeled by a 2-Dimensional linear expanding-shrinking movement. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimated, a reconstruction algorithm based on superposition method was used to removed the MRI artifact. For the purpose of estimating unknown motion parameters, we applied the spectrum shift method to find the respiratory fluctuation function, the x directional expansion coefficient and its center, and also we used the minimum energy method to find the y directional expansion coefficient and its center. The effectiveness of this presented method is shown by Computer simulations.

  • PDF

MRI Artifact Correction due to Respiratory Motion (호흡운동에 따른 MRI 아티팩트 수정)

  • 김응규;김규헌
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.58-61
    • /
    • 2003
  • In this study, a planar respiratory motion is modeled by a 2-D linear expanding-shrinking movement. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimated, a construction algorithm based on superposition method was used to remove the MRI artifact. For the purpose of estimating unknown motion parameters, we used the spectrum shift method to find the respiratory fluctuation function, the x directional expansion coefficient and its center, and we also used the minimum energy method to find the y directional expansion coefficient and its center. Finally the effectiveness of this presented method is shown by computer simulations.

  • PDF