• Title/Summary/Keyword: resources circulation

Search Result 407, Processing Time 0.027 seconds

광도만에 있어서 물질수송과정의 수치예측

  • 이인철;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.159-164
    • /
    • 2000
  • In order to clarify the seasonal variation of residual current and material transportation process in Hiroshima Bay, JAPAN, the real-time simulation of residual current and particle tracking by using Euler-Lagrange model were carried out. The calculated tidal current and water temperature and salinity showed good agreement with the observed ones. The residual currents showed the southward flow pattern at the upper layer, and the northward flow pattern at the lower layer. The flow structure of residual current in Hiroshima Bay is an estuarine circulation affected by density flow and wind driven current. The residual current plays an improtant role of material transportation in th bay.

  • PDF

Preliminary Results of a Numerical Experiment on Wintertime Circulation in the East China Sea (동지나해의 동계의 해수순환에 관한 수치실험)

  • 최병호
    • Water for future
    • /
    • v.17 no.4
    • /
    • pp.293-302
    • /
    • 1984
  • The tidal and meteorological condition associated with wintertime surges in the Ease China Sea are described. The vertically-integrated finite difference model of the East china Sea have been used to investigate the surges generated during a period of 5 days in November, 1983 dynamically. Computed residual elevations are compared with hourly records form selected tide gauges along the west coast of Korea. Preliminary results on circulation pattern derived from the numerical model are presented and discussed. Further refinement of the model using current meter observation is presently being performed to provide more accurate information on bottom stress distribution.

  • PDF

Simulation of Tidal Fields around a Huge Floating Marina using a Multi-level Method

  • BOO SUNG YOUN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.114-119
    • /
    • 2004
  • Floating marina has been interests as an alternative to the facilities for recreational boats because of its cost effectivenes and less environmental conflicts. For tile present research, a square floating marina with a length of 400m and draft of 5m was used. This marina can be extended to 800m by putting anotjer one together. Tidal field around tile marina was simulated using a multi-level finite difference method. Tidal motion was assumed sinusoidal in a closed rectangular bay. Velocities and residual current were investigated for two cases of single marina and two marinas installed in tile bay. It was found that the horizontal velocity fields from the water surface to the structure bottom around tile marina were affected. In the marina basin, magnitude of velocity was reduced considerably but overall quality of water circulation was preserved even after two marina were installed.

  • PDF

A Study on Stormwater Retention and Infiltration Ponds System for Improvement of Water Circulation and Increase of Bio-diversity (물 순환 개선 및 생물다양성 증진을 위한 우수저류 및 침투연못 시스템에 관한 연구)

  • Kim, Kwi-Gon;Kim, Hyea-Ju;Lee, Jae-Chul;Kim, Jong-Sub;Jang, Hey-Young;Son, Sam-Gi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.53-65
    • /
    • 2000
  • The objectives of this study are to develop a stormwater management system that would contribute to improving water circulation, recycling storm water and promoting biodiversity in urban areas, to apply the system in an actual site, and to verify its effectiveness in order to generate a stormwater management system applicable in Korea. This study reviewed former researches and case studies, categorized stormwater management system into pre-treatment, retention and infiltration phases, and analyzed the strength and weakness of the techniques by synthesizing unit techniques of each stage. As a result, the process of the stormwater management system includes the following phases: 1) a rubble filtration layer; 2) a retention pond; 3) a infiltration pond; and 4) a stormwater retention pool (recirculation and recycling). Then, an empirical study to design and create the generated system according to the features of a site and to verify its effectiveness was conducted. The future study direction is to verify the effectiveness of the developed stormwater retention and infiltration ponds. To this end, it is planned to perform hydrological monitoring using automatic measuring equipment and monitoring on habitat bases and the biota living on the base. Based on its outcome, the applied model would be refined and improved to develop an alternative stormwater management system that would allow to achieve the improvement of urban water circulation, increase of biodiversity and efficient use of water resources.

  • PDF

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 1. Change of Daily Rainfall Depth Distribution due to Different Monthly/Yearly Rainfall Depth (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석)

  • Yun, Yong-Nam;Yu, Cheon-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.617-625
    • /
    • 1999
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using General Circulation Models(GCMs) has shown the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. This changes in global water circulation pattern result in abnormal and more frequent meteorological events such as severe floods and droughts, generally more severe than the normal ones, which are now common around the world and is referred as a indirect proof of global warming. Korean peninsula also cannot be an exception and have had several extremes recently. The main objective of this research is to analyze the impact of global warming on the change of flood and drought frequency. Based on the assumption that now is a point in a continuously changing climate due to global warming, we analyzed the observed daily rainfall data to find out how the increase of annual rainfall amount affects the distribution of daily rainfall. Obviously, the more the annual rainfall depth, the more frequency of much daily rainfall, and vice versa. However, the analysis of the 17 points data of Keum river basin in Korea shows that especially the number of days of under 10mm or over 50mm daily rainfall depth is highly correlated with the amount of annual rainfall depth, not the number of dry days with their correlation coefficients quite high around 0.8 to 0.9.

  • PDF

Selection framework of representative general circulation models using the selected best bias correction method (최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정)

  • Song, Young Hoon;Chung, Eun-Sung;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.337-347
    • /
    • 2019
  • This study proposes the framework to select the representative general circulation model (GCM) for climate change projection. The grid-based results of GCMs were transformed to all considered meteorological stations using inverse distance weighted (IDW) method and its results were compared to the observed precipitation. Six quantile mapping methods and random forest method were used to correct the bias between GCM's and the observation data. Thus, the empirical quantile which belongs to non-parameteric transformation method was selected as a best bias correction method by comparing the measures of performance indicators. Then, one of the multi-criteria decision techniques, TOPSIS (Technique for Order of Preference by Ideal Solution), was used to find the representative GCM using the performances of four GCMs after the bias correction using empirical quantile method. As a result, GISS-E2-R was the best and followed by MIROC5, CSIRO-Mk3-6-0, and CCSM4. Because these results are limited several GCMs, different results will be expected if more GCM data considered.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

An Environmental Evaluation of Copper and Aluminum Metal Resources Circulation by Life Cycle Assessment (LCA기법을 적용한 구리 및 알루미늄 금속자원 순환의 환경성 평가)

  • Shin, Woochul;Hwang, Yongwoo;Moon, Jinyoung;Kong, Chanhwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.139-146
    • /
    • 2014
  • In this research, we quantified the environmental load while using and not using secondary resources. During the process of primary processed product of metal resources (copper, aluminum), we applied LCA technique and analyzed by dividing into 8 environmental impact categories that affect the environment. Furthermore, we analyzed the greenhouse gas that occur during the process of primary processed product domestically and globally according to the changes of each metal resource's recycling rate. Consequently, when producing 1 ton of copper using secondary resources, the environmental effects were found to be 6.09E + 01 person-yr/f.u. and 7.23E + 01 person-yr/f.u. Additionally, as the recycling rate increased both globally and domestically, the amount of greenhouse gas decreased. Producing 1 ton of Aluminum using secondary resources, the environmental effects were found to be 2.34E + 02 person-yr/f.u. and 3.01E + 02 person-yr/f.u. Moreover, as the recycling rate domestically decreased, the amount of greenhouse gas increased, however the globally was decreased.

Evaluation for Sustainable Resource Management In Korea using Material Flow Indicators (물질흐름지표를 이용한 한국(韓國)의 지속가능한 자원관리(資源管理) 평가 연구(硏究))

  • Kim, Yu-Jeong
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.43-49
    • /
    • 2011
  • This study calculated the three indices of Korea's resource productivity (and raw material productivity), material circulation rate and decoupling factor to evaluate the sustainability of domestic economic activities and resource consumption and examine the extent of dematerialization. Korea's resource productivity improved 22% from 1.32 million KRW/ton in 2000 to 1.61 million KRW/ton in 2007, with the annual average growth of resource productivity during the period standing at 2.88%. Raw material inputs accounted for 73-76% of domestic material consumption (DMC); raw material productivity for the year 2007 was 2.11 million KRW/ton, growing 3% on annual average from 2000 through 2007. The wastes released are circulated into the economic system through recycling and energization. Korea's material circulation went up from 10.9% in 2000 to 15.6% in 2007, growing by an annual average of 5.3% during the period. The rate of change in year-on-year growth, however, was found to be on the gradual decrease. This study also showed that Korea's economic activities were decoupled with its resource consumption as the country heads toward dematerialization through sustainable resource management.