• Title/Summary/Keyword: resource prediction by neural network

Search Result 14, Processing Time 0.026 seconds

Application of Neural Network for Long-Term Correction of Wind Data

  • Vaas, Franz;Kim, Hyun-Goo
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.23-29
    • /
    • 2008
  • Wind farm development project contains high business risks because that a wind farm, which is to be operating for 20 years, has to be designed and assessed only relying on a year or little more in-situ wind data. Accordingly, long-term correction of short-term measurement data is one of most important process in wind resource assessment for project feasibility investigation. This paper shows comparison of general Measure-Correlate-Prediction models and neural network, and presents new method using neural network for increasing prediction accuracy by accommodating multiple reference data. The proposed method would be interim step to complete long-term correction methodology for Korea, complicated Monsoon country where seasonal and diurnal variation of local meteorology is very wide.

  • PDF

Intelligent System Predictor using Virtual Neural Predictive Model

  • 박상민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.101-105
    • /
    • 1998
  • A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.

  • PDF

Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms (준지도 학습 및 신경망 알고리즘을 이용한 전기가격 예측)

  • Kim, Hang Seok;Shin, Hyun Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • Predicting monthly electricity price has been a significant factor of decision-making for plant resource management, fuel purchase plan, plans to plant, operating plan budget, and so on. In this paper, we propose a sophisticated prediction model in terms of the technique of modeling and the variety of the collected variables. The proposed model hybridizes the semi-supervised learning and the artificial neural network algorithms. The former is the most recent and a spotlighted algorithm in data mining and machine learning fields, and the latter is known as one of the well-established algorithms in the fields. Diverse economic/financial indexes such as the crude oil prices, LNG prices, exchange rates, composite indexes of representative global stock markets, etc. are collected and used for the semi-supervised learning which predicts the up-down movement of the price. Whereas various climatic indexes such as temperature, rainfall, sunlight, air pressure, etc, are used for the artificial neural network which predicts the real-values of the price. The resulting values are hybridized in the proposed model. The excellency of the model was empirically verified with the monthly data of electricity price provided by the Korea Energy Economics Institute.

Adaptive Call Admission Control Based on Resource Prediction by Neural Network in Mobile Wireless Environments (모바일 무선환경에서 신경망 자원예측에 의한 적응 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2009
  • This paper presents an adaptive call admission control(CAC) algorithm based on a target handoff call dropping probability in mobile wireless environments. This method uses a neural network for predicting and reserving the bandwidth demands for handoff calls and new calls. The amount of bandwidth to be reserved is adaptively adjusted by a target value of handoff call dropping probability(CDP). That is, if the handoff CDP exceeds the a target CDP value, the bandwidth to be reserved should be increased to reduce the handoff dropping probability below a target value. The proposed method is intended to prevent from increasing handoff call dropping probability when bandwidth to be reserved is not enough for handoff calls due to an uncertain prediction. Our simulations compare the handoff CDP in proposed CAC with that of an existing CAC. Results show that the proposed method sustains handoff call dropping probability below our target value.

  • PDF

Performance Comparison of Call Admission Control Based on Predictive Resource Reservations in Wireless Networks (무선망의 자원예측에 의한 호 수락제어방식의 성능비교)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.372-377
    • /
    • 2009
  • This paper evaluates the performance of three methods for predicting resources requested by mobile's calls and a call admission algorithm based on these predicting methods respectively in wireless networks. The first method is based on Wiener prediction model and the second method is based on the MMOSPRED algorithm and the third method is based on the neural network. The proposed call admission algorithm is based on prioritized handoff call in resource allocation. The resources for future handoff calls are therefore predicted and reserved in advance, and then new calls are admitted as long as the remaining resources are sufficient. We compare their performances in terms of prediction error, new call blocking and handoff dropping probabilities by simulation. Results show that the CAC based on Wiener prediction model performs favorably due to exact resources prediction.

  • PDF

An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP (성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로)

  • Lim Se-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

A Predictive Connection Admission Control Using Neural Networks for Multiclass Cognitive Users Radio Networks (멀티 클래스 인지 사용자 네트워크에서 신경망을 이용한 예측 연결수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.435-441
    • /
    • 2013
  • This paper proposes a neural net based-predictive connection admission control (CAC) scheme for multiclass users in wireless cognitive radio networks. We classifies cognitive users(cu) into real and non real time services, and then permit only real time services to reserve the demanded resource for spectrum handoff in guard channel for provisioning the desired QoS. Neural net is employed to predict primary user's arrival on time and demanded channels. Resource scheduling scheme is based on $C_IA$(cognitive user I complete access) shown in this paper. For keeping primary users from interference, the CAC is performed on only cognitive user not primary user. Simulation results show that our schemes can guarantee the desired QoS by cognitive real time services.

Spatio-temporal potential future drought prediction using machine learning for time series data forecast in Abomey-calavi (South of Benin)

  • Agossou, Amos;Kim, Do Yeon;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.268-268
    • /
    • 2021
  • Groundwater resource is mostly used in Abomey-calavi (southern region of Benin) as main source of water for domestic, industrial, and agricultural activities. Groundwater intake across the region is not perfectly controlled by a network due to the presence of many private boreholes and traditional wells used by the population. After some decades, this important resource is becoming more and more vulnerable and needs more attention. For a better groundwater management in the region of Abomey-calavi, the present study attempts to predict a future probable groundwater drought using Recurrent Neural Network (RNN) for future groundwater level prediction. The RNN model was created in python using jupyter library. Six years monthly groundwater level data was used for the model calibration, two years data for the model test and the model was finaly used to predict two years future groundwater level (years 2020 and 2021). GRI was calculated for 9 wells across the area from 2012 to 2021. The GRI value in dry season (by the end of March) showed groundwater drought for the first time during the study period in 2014 as severe and moderate; from 2015 to 2021 it shows only moderate drought. The rainy season in years 2020 and 2021 is relatively wet and near normal. GRI showed no drought in rainy season during the study period but an important diminution of groundwater level between 2012 and 2021. The Pearson's correlation coefficient calculated between GRI and rainfall from 2005 to 2020 (using only three wells with times series long period data) proved that the groundwater drought mostly observed in dry season is not mainly caused by rainfall scarcity (correlation values between -0.113 and -0.083), but this could be the consequence of an overexploitation of the resource which caused the important spatial and temporal diminution observed from 2012 to 2021.

  • PDF

A Study on Optimal Duration Estimation for Construction Activity

  • Cho, Bit Na;Kim, Young Hwan;Kim, Min Seo;Jeong, Tae Woon;Kim, Chang Hak;Kang, Leen Seok
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.612-613
    • /
    • 2015
  • As a construction project is recently becoming large-scaled and complex, construction process plan and management for successful performance of a construction project has become more important. Especially a reasonable estimation plan of activity duration is required because the activity duration is directly related to the determination of the entire project duration and budget. However, the activity duration is used to estimate by the experience of a construction manager and past construction records. Furthermore, the prediction of activity duration is more difficult because there is some uncertainty caused by various influencing factors in a construction project. This study suggests an estimation model of construction activity duration using neural network theory for a more systematic and objective estimation of each activity duration. Because suggested model estimates the activity duration by a reasonable schedule plan, it is expected to reduce the error between planning duration and actual duration in a construction project. And it can be a more systematic estimation method of activity duration comparing to the estimation method by experience of project manager.

  • PDF

Development of Well Placement Optimization Model using Artificial Neural Network and Simulated Annealing (인공신경망과 SA 알고리즘을 이용한 지능형 생산정 위치 최적화 전산 모델 개발)

  • Kwak, Tae-Sung;Jung, Ji-Hun;Han, Dong-Kwon;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.28-37
    • /
    • 2015
  • This study presents the development of a well placement optimization model, combining an artificial neural network, which enables high-speed calculation, with a simulated annealing algorithm. The conventional FDM simulator takes excessive time when used to perform a field scale reservoir simulation. In order to solve this problem, an artificial neural network was applied to the model to allow the simulation to be executed within a short time. Also by using the given result, the optimization method, SA algorithm, was implemented to automatically select the optimal location without taking any subjective experiences into consideration. By comparing the result of the developed model with the eclipse simulator, it was found that the prediction performance of the developed model has become favorable, and the speed of calculation performance has also been improved. Especially, the optimum value was estimated by performing a sensitivity analysis for the cooling rate and the initial temperature, which is the control parameter of SA algorithm. From this result, it was verified that the calculation performance has been improved, as well. Lastly, an optimization for the well placement was performed using the model, and it concluded the optimized place for the well by selecting regions with great productivity.