• Title/Summary/Keyword: resonating sensor

Search Result 4, Processing Time 0.018 seconds

Measurement of a gauge factor of a carbon fiber and its application to sensors (탄소섬유의 게이지 계수 측정 및 센서 응용)

  • Kim, Ji-Kwan;Park, Chang-Sin;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.162-167
    • /
    • 2008
  • In this paper we report on the electrical properties of carbon fiber which is an attractive material for strain gauges and can also be applied to resonating micro sensors. The carbon fibers used in this research was manufactured from polyactylonitrile (PAN). The fabricated carbon fibers had about $10\;{\mu}m$ in length and several centimeters in length. We employed a micro structure to measure electrical properties of the carbon fiber. The measured electrical resistivity of the carbon fibers were about $3{\times}10^{-3}{\Omega}{\cdot}cm$ A gauge factor of the carbon fiber is also observed with the same system and it was about 400, depending on the structure of the carbon fiber. For the sensor applications of the carbon fiber, it is selectively placed between the gap of Al electrodes using a dielectrophoresis method. When the carbon fiber is resonated by a piezoelectric ceramic, resistance change at a variety of resonance mode was observed through an electrical system.

Devising an Objective Nasal Vibration Test for Nasal Resonatory Disorders

  • Choi, Hong-Shik;Park, Yong-Jae;Kim, Kwang-Moon
    • Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.39-52
    • /
    • 2000
  • The present study investigates the clinical applicability of a new device which objectively measures nasal resonating vibration via piezoelectric vibratory sensor from 10 normal volunteers, 10 patients with definite hypernasality and 10 nasal polyposis patients. For the assessment of the hypernasality, the ratio of 'ng' to 'a' as well as that of 'mama' to 'papa' passages were used. For the evaluation of hyponasality, the ratio of nasal vibration post- to pre-induced cul-de-sac resonation was calculated. In the control group, the ratio of ng/a and mama/papa passages was larger than 8, while in the hypernasality group, the ratio was markedly lower. The vibratory signals of 'a' and 'ng' increased markedly in the control group and the hypernasality group after inducing cul-de-sac resonation, while in the hyponasality group, the change was minimal.

  • PDF

Fabrication of a Low Frequency Vibration Driven Electromagnetic Energy Harvester Using FR-4 Planar Spring and Its Characteristics (FR-4 평판 스프링 기반 저주파수용 진동형 전자기식 에너지 하베스터의 제작과 그 특성)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.238-242
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a low frequency vibration driven electromagnetic energy harvester. The fabricated generator consists of a permanent magnet of NdFeB, a FR-4 planar spring and a Copper cylinder type coil. ANSYS modal analysis was used to determine the resonant frequency for the generator. The implemented generator is capable of producing up to 550 mV peak-to-peak under 7 Hz frequency, which has a maximum power of $95.5\;{\mu}W$ with load resistance of $580\;{\Omega}$. This device is shown to generate sufficient power at different resonating modes, and the experimental and simulated results are discussed and composed.

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.