• 제목/요약/키워드: resonant gyroscope

검색결과 29건 처리시간 0.022초

고체형 정밀 공진 자이로스코프를 위한 이차 PLL 루프필터 기반 위상제어루프 설계 (Phase Control Loop Design based on Second Order PLL Loop Filter for Solid Type High Q-factor Resonant Gyroscope)

  • 박상준;용기력;이영재;성상경
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.546-554
    • /
    • 2012
  • This paper suggests a design method of an improved phase control loop for tracking resonant frequency of solid type precision resonant gyroscope. In general, a low cost MEMS gyroscope adapts the automatic gain control loops by taking a velocity feedback configuration. This control technique for controlling the resonance amplitude shows a stable performance. But in terms of resonant frequency tracking, this technique shows an unreliable performance due to phase errors because the AGC method cannot provide an active phase control capability. For the resonance control loop design of a solid type precision resonant gyroscope, this paper presents a phase domain control loop based on linear PLL (Phase Locked Loop). In particular, phase control loop is exploited using a higher order PLL loop filter by extending the first order active PI (Proportion-Integral) filter. For the verification of the proposed loop design, a hemispherical resonant gyroscope is considered. Numerical simulation result demonstrates that the control loop shows a robust performance against initial resonant frequency gap between resonator and voltage control oscillator. Also it is verified that the designed loop achieves a stable oscillation even under the initial frequency gap condition of about 25 Hz, which amounts to about 1% of the natural frequency of a conventional resonant gyroscope.

정전력 구동 및 전자력 검출형 평면 진송 각속도계 (Planar Vibratory Gyroscope using Electrostatic Actuation and Electromagnetic Detection)

  • 이상훈;임형택;이승기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1089-1092
    • /
    • 1995
  • A planar vibratory gyroscope using electrostatic actuation and electromagnetic detection is proposed. The gyroscope has large sensitivity and can be fabricated by using surface micrimachining, bulk micromachining and conventional machining technology. In this paper, the gyroscope and the electromagnetic detecting system equations are derived to determine the output characteristics for the planar vibratory gyroscope using electrostatic acturation and electromagnetic detection. The maximum output is obtained when the driving frequencyequals to the detecting frequency. The resonant frequencies of the resonator are determined by the beam stiffness, i.e. the material constants and spring dimensions. The dimensions of the beams are determined using the analytic vibration modelling. The expected resonant frequencies are 200Hz both and the sensitivity is 62mV/deg/sec with 4000 electronic circuit amplifying coefficient for an AC drive voltage of 3V bias voltage of 15V and DC field current of 50 mA.

  • PDF

마이크로 공진형 센서의 주파수 및 진폭 제어 (Frequency and Amplitude Control of Micro Resonant Sensors)

  • 박성수
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.

Quality factor 와 공진시 변위 측정을 이용한 진동형 자이로스코프의 특성 평가에 관한 연구 (A Study on the Measurement Methodology of Characteristics of the Vibratory Micro Gyroscope Using the Quality factor and the Resonant Displacement)

  • 전승훈;이준영;정형균;장현기;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.2090-2092
    • /
    • 2004
  • In this paper, the new measurement methodology of characteristics of the vibratory micro gyroscope using Quality factor and the resonant displacement was proposed. Because the Quality factor has a large error under the high Quality factor condition, it is difficult to analyze the characteristics of the vacuum packaged vibratory micro gyroscopes with the Quality factor. We analyzed mechanical characteristics of gyroscope with the value of Quality factor. We described measurement errors of mechanical characteristics of micro gyroscopes. The measured value of Quality factor is 47532 and error range of Quality factor is from -29.8 % to 73.9 %. The value of resonant displacement is 3.4${\mu}m$ and the measurement error is 2.9 %. From the result of Quality factor degradation and resonant displacement degradation, 1698 days and 1503 days were estimated as Time To Failure (TTF), respectively. The range of estimation error of Quality factor degradation and resonant displacement degradation is calculated from 1246 days to 1832 days and from 1456 days to 1537 days, respectively. We can analyze the characteristics of the vibratory gyroscope using the quality factor when the Quality factor is smaller than 10,000. Also we can analyze that using the resonant displacement when the Quality factor is larger than 10,000.

  • PDF

각속도계 적용을 위한 이중 질량 시스템의 주파수 응답에 관한 연구 (A study on frequency response of two-mass system for gyroscope applications)

  • 황영석;정형균;송은석;백창욱;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.154-155
    • /
    • 2007
  • This paper describes frequency response of two-mass system for gyroscope applications. The two-mass system of the proposed device is adapted to the sensing part of the gyroscope in this research. Two-mass system has two resonant peaks and wide flat region between two resonant peaks. The resonant frequency of driving part is in this flat region. Therefore, frequency tuning is not necessary for mode matching. In the proposed device, resonant frequency is designed as 7183 Hz in driving part. Mass ratio of two masses in sensing part is 0.1 and device size is 6 mm $\times$ 6 mm. The device is fabricated by SiOG process. The fabricated spring width is increased from $4{\mu}m$ to $4.5{\sim}4.7{\mu}m$, and the measured resonant frequency is 8392 Hz in driving mode. We operated the sensing part using parallel plate of proof mass to verify the sensing part. It is confirmed the device has a wide fiat region in frequency response curve and the resonant frequency of the driving part is in the wide flat region of sensing mode.

  • PDF

진동형 각속도계의 최적 구동신호 튜닝에 대한 연구 (A Study on the Optimal Drive Signal Tuning of Vibratory Gyroscope)

  • 이준영;전승훈;정형균;장현기;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.40-42
    • /
    • 2004
  • This paper describes a method to find an optimal driving condition of vibratory gyroscope. Mechanical coupling between driving and sensing mode degrades the performance of vibratory gyroscope. When the resonant frequencies of driving and sensing parts are fixed, frequency and amplitude of driving source affect mechanical coupling. Thus, they should be optimally tuned. To investigate the influence of driving source on mechanical coupling, we measured frequency response and displacement of driving and sensing mode using laser vibromenter. The measured frequency response and displacement show that the gyroscope has minimum mechanical coupling when the frequency of driving source is set to the intermediate value of driving and sensing part resonant frequency. Measurement also shows that the mechanical coupling increases abruptly at a certain driving voltage as the voltage increases.

  • PDF

다중 질량 시스템을 이용한 자이로스코프 설계 (Design of MEMS Gyroscope Using Multi Mass System)

  • 정슨훈;이준영;정형균;장현기;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.43-45
    • /
    • 2004
  • In this paper, new design concept of MEMS gyroscope using multi mass system is proposed. The gyroscope having wide bandwidth was designed utilizing the multi mass system in order to reduce the degradation of the performance by resonance variation. The multi mass system has more than two masses and separates the resonant peak of each mass. Using MATLAB, the variation of bandwidth and driving displacement according to mass ratio of the multi mass system was analyzed. This result was compared with that of current single mass system gyroscope. In the 7 kHz resonant frequency design, the multi mass system has 395.3Hz bandwidth, which is six times larger than single mass system bandwidth, 58.5 Hz.

  • PDF

전자기력 방식의 진동 자이로스코프 구동을 위한 디지털 제어에 관한 연구 (A Study on Digital Control of Electromagnetic Force based Vibrating Gyroscope)

  • 김모세;이학성;홍성경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.235-238
    • /
    • 2003
  • In this study, we propose a method of digital control to drive the vibrating gyroscope using electromagnetic-force. The gyroscope requires accurate vibration control and signal processing for high performance. Conventional PLL based analog controller is not only difficult to manufacture but also weak to outer environment such as temperatures, air pressures and etc. But digital controller using DSP can consistently maintain the cylinder vibration and perform digital signal processing regardless of disturbance. DSP's PWM function was utilized to control the vibration, and rotation-detecting algorithm was developed. Finally, the controller was verified by simulation and experiment using rotation-rate table.

  • PDF

저궤도 위성 자세제어용 자이로 고전압 발생기 설계 (The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite)

  • 김의찬;이흥호
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

링 레이저 자이로스콥을 위한 유한요소법 기계 설계 (Mechanical Design of Ring Laser Gyroscope Using Finite Element Method)

  • 이정익
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.107-111
    • /
    • 2013
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region (dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM applications. As a result, comparing to the past result, the maximum prediction error of resonant frequency was within 3 percent and peak dither rate was within 5 percent. It was found that the theoretical equations can be feasible for the mechanical performance of dither.