• Title/Summary/Keyword: resonance excitation

Search Result 333, Processing Time 0.031 seconds

Vibration analysis of a DWT 1,000-ton ocean-research vessel with electric propulsion

  • Bae, Dong-Myung;Cao, Bo;Chen, Tuo-Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.75-82
    • /
    • 2014
  • In vibration analysis of ships, the principle aim is to determine the natural frequencies and excitation frequencies, and use this information to avoid resonances and vibration damage. The simplest method is to prevent resonance conditions, which is effective as long as the natural frequencies and excitation frequencies can be regarded as independent from environmental conditions. For ships that use electric propulsion systems, the sources of vibration are reduced compared with those caused by a diesel engine or other combustion-based propulsion systems. However, the frequency spectrum of these vibrations may be different; therefore, to understand the characteristics of the electric propulsion, we also should investigate how the ship responds to these vibrations. We focused on a 1,000-ton deadweight (DWT) ocean-research vessel using an electric propulsion system and analyzed the response to vibration.

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

Experimental Study on Performance Tests of Vibration Source for Helical Gears (헬리컬 기어계의 가진원 성능 평가에 대한 실험적 연구)

  • Park, Gwang-Min;Kim, Chan-Jung;Lee, Jae-won;Lee, Bong-Hyun;Kim, Wan-soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.602-603
    • /
    • 2014
  • A gearbox can be regarded as a self-exciting dynamic system, which has a vibration source. Transmission error (TE) is considered to be an main excitation source for gear noise and vibration. The TE excitation is transmitted through the gears, shafts, bearings, and housings. Thus, an experimental approach to each mechanical parts is useful in order to understand and evaluate the dynamic behaviour of a gearbox. This study is focused on the transmission and vibration characteristics of a helical gear system in development stage. In addition, by considering the tolerance factors and resonance characteristics, the vibration response of actual dynamic system is analysed.

  • PDF

Pre-processor programing for the vibrational characteristic of generator's stator (발전기 고정자의 진동특성을 위한 전처리기 프로그래밍)

  • Ahn, Chang-Gi;Bae, Yong-Chae;Ham, ji-woong;Lee, Dong-Woen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.476-481
    • /
    • 2012
  • A plant's generator system under operating condition has been suffered the vibration from the excitation force with 120Hz. The vibration is generated in the stator end windings. For analyze dynamic characteristics of the generator's stator, its finite element model were obtained using ANSYS software package for modal and harmonic analysis. we compare the analysis result with experimental data. The results show that the resonance frequency, which is related with second ecliptical mode on the stator end windings 129Hz. The experimental results are good agreement with the FEA model.

  • PDF

An Experimental Study on the Dynamic Characteristics of Onboard Machinery with Resilient Mounts (선내 탑재 마운팅 장비의 동특성에 관한 실험적 연구)

  • 김극수;최수현
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.28-33
    • /
    • 2003
  • This study is performed to evaluate and design the dynamic characteristics of the onboard machinery with resilient mounts. To avoid resonance with onboard machinery and external force, it is necessary to calculate natural frequencies of the resilient mounting system more accurately. Natural frequencies of on board machinery are determined by rigid body properties(mass, moment of inertia, center of mass) of machinery and stiffness of mounts. But it is very difficult to calculate rigid body properties theoretically. And stiffness properties of rubber mounts vary with dynamic displacement, pre load, frequency and temperature, and so on. In this study, we have identified rigid body properties using experimental modal analysis and estimated dynamic stiffness of rubber mount for onboard machinery using measured vibration response during seatrial. We measured displacement excitation through deck under mounts and evaluated relationship between modes of resilient mounting system and main excitation sources of a ship.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.129-133
    • /
    • 2004
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

  • PDF

An Experimental Study for Preventing the Resonance of Steam Turbine Blade (증기터빈 블레이드의 공진 방지를 위한 실험 연구)

  • 하현천;이동진;류석주
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.410-415
    • /
    • 2001
  • This paper describes an experimental analysis for improving the stability of blade failure due to the vibration resonance, which happens in the low-pressure steam turbine. Some cracks due to high cycle fatigue were found in the blades of a low-pressure turbine after long time operation. Impact test showed that such failure was mainly caused by the resonance. In other words, since one of the natural frequencies of the grouped blade is very close to the excitation frequency of the nozzle, the resonant vibration leads to a large amplitude of displacement and results in a large amount of stress that may cause fatigue failures in the blades. It is interesting that the blade failures occur only at blades neighboring with the nodal points of the natural vibration mode whose natural frequency is close to the nozzle passing frequency. The effective methods for increasing the reliability against the blade vibration are a heightening the fatigue limit of the blade using an advanced material and a removing the resonance away from the operating speed. It is well known that the removal of theresonance could be obtained by the installation of different types of shrouds, wires, and links between the blades as well as by the chance of the number of nozzles. In the present work, two kinds of modification for avoiding the resonance haute been considered; 1) slot-type finger, 2) long span cover. Full-scale mockup tests have been performed in order to confirm the verification for modification in the shop. Test results show that the use of long span cover is very useful to change the natural frequencies of the grouped blade and to avoid the resonance effectively.

  • PDF

Approximate solution for a building installed with a friction damper : revisited and new result (마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과)

  • Min, Kyung-Won;Seong, Ji-Young;Lee, Sung-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

Infinite determinant method for stability analysis of parametrically excited systems (매개변수 가진 시스템의 안정서 해석을 위한 무한행렬법)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.916-923
    • /
    • 1998
  • In this paper, an infinite determinant method is presenstd for stability analysis of parametrically excited systems. Unstable regions of the combination parametric resonance as well as principal resonance can be identified with the method. A numerical problem of relatively large amplitude of excitation is solved, and the results of the presented method are compared to those of the multiple scales perturbation method. It is found that the presented method obtains more accurate transition curves which divide stable and unstables in the parameter plane than those of the multiple scales perturbation method.

Finite Element Analysis for Satellite Antenna Structures Subject to Forced Sinusoidal Vibration (위성 안테나 구조물의 정현파 강제 진동에 대한 유한 요소 해석)

  • Shin, Won-Ho;Oh, Il-Kon;Han, Jae-Hung;Oh, Se-Hee;Lee, In;Kim, Chun-Gon;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.13-18
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sine vibration of Ka- and Ku- bend antenna structures using MSC/PATRAN/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite with the spacecraft bus structure. From the forced sinusoidal vibration, we have observed output acceleration versus input in X-,Y- and Z- direction, based on base excitation using large mass method. The results of finite elements analysis can be used as the reference data for the experimental test of satellite antenna, resulting in the reduction of cost and time by predicting and complementing experimental data.

  • PDF