• Title/Summary/Keyword: resonance excitation

Search Result 333, Processing Time 0.03 seconds

A Study on Frequency Tunable Vibration Energy Harvester (주파수 튜닝이 가능한 진동형 에너지 하베스터에 관한 연구)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2014
  • The common vibration energy harvester effectively converts mechanical vibration to electric power at a specific resonance frequency that must match the ambient excitation frequency. The resonance frequencies of energy harvesters are fixed during the design process and could not be changed after fabrication. In this paper, we proposed the new frequency tuning which uses the rotatable spring in order to adjust the spring constants. By this tuning method, the resonance frequency of the system can simply be manipulated using spring rotation. The proposed energy harvester has been successfully tuned to a resonance frequency between 23 and 32 Hz. The experimental results demonstrated that the proposed energy harvester could generate a maximum output power of $60{\mu}W$ with an acceleration of 0.5 g ($1g=9.81m/s^2$), and that the resonance frequency of the harvester was able to tune approximately 31.4%. When the proposed harvester was attached to an automobile engine, the maximum open circuit voltage of 1.78 Vpp was produced at 700 rpm.

ATTITUDE STABILITY OF A SPACECRAFT WITH SLOSH MASS SUBJECT TO PARAMETRIC EXCITATION (계수자극을 받는 유동체를 포함한 위성체의 자세 안정도 해석)

  • Kang, Ja-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.205-216
    • /
    • 2003
  • The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.

Three-dimensional Chemical Shift Imaging with PRESS Excitation and Spiral Readouts (점구분 분광술 여기 방식과 나선형 판독경사를 이용한 삼차원 화학적 변위 영상법의 개발)

  • Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Purpose : We developed a 3D CSI (chemical shift imaging) sequence that uses the PRESS (point resolved spectroscopy) excitation scheme and spiral-based readout gradients. Materials and Methods : We implemented constant-density spirals ($32{\times}32$ matrix, $24{\times}24\;cm$ FOV) which use analytic equations to enable real-time prescription on the scanner. In-vivo data from the brain were collected and reconstructed using the gridding algorithm. Results : Data illustrate that with our imaging sequence, the benefits of the PRESS technique, which include elimination of lipid artifacts, remain intact while flexible scan time versus resolution tradeoffs can be achieved using the constant-density spirals. Volumetric high resolution 3D CSI covering 5760 cm3 could be obtained in 12.5 minutes. Conclusion : Spiral-based readout gradients offer a flexible tradeoff between scan time versus resolution. By combining this feature with PRESS based excitation, efficient methods of volumetric spectroscopic imaging can be accomplished by obtaining whole brain coverage while eliminating lipid contamination.

  • PDF

Development of Cable Excitation System for Evaluating Dynamic Characteristics of Stay Cables (사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won;Ahn, Sang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play on important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally, it is necessary to exactly estimate the dynamic characteristics of the existing cables. To achieve more reliable dynamic properties of stay cables, precise excitations inducing forced vibration are needed. Therefore, in this study, a cable excitation system(exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived, Using the cable exciter, sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

On the nonlinear structural analysis of wind turbine blades using reduced degree-of-freedom models

  • Holm-Jorgensen, K.;Staerdahl, J.W.;Nielsen, S.R.K.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.107-127
    • /
    • 2008
  • Wind turbine blades are increasing in magnitude without a proportional increase of stiffness for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Nonlinear vibration analysis of fluid-conveying cantilever graphene platelet reinforced pipe

  • Bashar Mahmood Ali;Mehmet AKKAS;Aybaba HANCERLIOGULLARI;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • This paper is motivated by the lack of studies relating to vibration and nonlinear resonance of fluid-conveying cantilever porous GPLR pipes with fractional viscoelastic model resting on nonlinear foundations. A dynamical model of cantilever porous Graphene Platelet Reinforced (GPLR) pipes conveying fluid and resting on nonlinear foundation is proposed, and the vibration, natural frequencies and primary resonant of such system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with fractional viscoelastic model is used to govern the construction relation of the nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied on pipe and excitation frequency is close to the first natural frequency. The governing equation for transverse motion of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Vibration Optimum Design of Rotor Systems Using Genetic Algorithm (유전 알고리즘을 이용한 회전축계의 진동 최적설계)

  • 최병근;양보석
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.645-653
    • /
    • 1997
  • For high performance rotating machinery, unstable vibrations may occur caused by hydrodynamic forces such as oil film forces, clearance excitation forces generated by the working fluid, and etc. In order to improve the availability one has to take into account the vibrations very accurately. When designing a rotating machinery, the stability behavior and the resonance response can be obtained by calculation of the complex eigenvalues. A suitable modifications of seal and/or bearing design may effectively improve the stability and the response of a rotor system. This paper deals with the optimum length and clearance of seals and bearings to minimize the resonance response(Q factor) and to maximize the logarithmic decrement in the operating speed under the constraints of design variables. Also, for an avoidance of resonance region from the operating speed, an optimization technique has been used to yield the critical speeds as far from the operating speed as possible. The optimization method is used by the genetic algorithm, which is a search algorithm based on the mechanics of natural selection and natural genetics. The results show that the optimum design of seals and bearings can significantly improve the resonance and the stability of the pump rotor system.

  • PDF

Vibration characteristics and reduction of Diesel Power Plant(DPP) (육상용 중속 디젤엔진 발전기세트의 진동 특성 및 저감)

  • Kim, Won-Hyun;Jung, Kun-Hwa;Lee, Soo-Mok;Ryoo, Young-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.39-40
    • /
    • 2006
  • Diesel power plant(DPP) with the medium speed diesel engine is operated under the very severe condition in aspect of load and operating time as compared with the marine diesel generator set. So, minimized vibration level have to be insured for the more stable operation of engine and generator. The vibration of generator set mainly comes from the resonance between the rigid modes by resilient mount or distortion modes by structural stiffness and the excitation forces of engine. Then, avoidance of resonance with structural modification is generally well known. In this paper, the first order vibration in non-resonance range and local vibration modes were investigated by impact test, response/ODS(operational deflection shape) measurement and 3D finite element analysis for the additional reduction of vibration. The proposed countermeasures were actually applied and their final effects were verified through the in-situ measurement.

  • PDF

A Study on the Sloshing of the Rectangular Tank Partially Filled with Fluid Under Translational Motion (병진운동하는 사각형 유체저장탱크 내부의 슬로싱 특성 연구)

  • 이영신;김현수;이재형;고성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.591-597
    • /
    • 2003
  • The oscillation of the fluid caused by external motions is called sloshing, which occurs in moving vehicles with contained fluid masses, such as the oil tankers, railroad cars, aircraft and rockets. Natural frequencies of fluid are much lower than that of solid structures, and the deformation caused by the excitation that is less than 1st natural frequency of fluid is very large. For the reason of that, sloshing characteristics under the ekcitation that is less than the 1st natural frequency must be studied prior to the consideration of natural frequencies of fluid. The experimental devices are constructed to simulate the translation motion. The rectangular tanks are made to study the sloshing characteristics under external excitation. The changes of water height are measured using an analogue camcorder and MPEG board, and those are compared to each other through a standard deviation. From the results of experiments, the sloshing is greatly influenced by the length of the rectangular tank than the width of that under the periodic translational motion in the length direction. The rapid amplification of sloshing by resonance is also confirmed experimentally.