• 제목/요약/키워드: resonance excitation

검색결과 333건 처리시간 0.03초

Dynamics of electric system for electromechanical integrated toroidal drive under mechanical disturbance

  • Hao, Xiuhong;Xu, Lizhong
    • Interaction and multiscale mechanics
    • /
    • 제2권2호
    • /
    • pp.189-207
    • /
    • 2009
  • Dynamics of the electric system for the toroidal drive under mechanical disturbance is presented. Using the method of perturbation, free vibrations of the electric system under mechanical disturbance are studied. The forced responses of the electric system to voltage excitation under mechanical disturbance are also presented. We show that as the time grows, the resonance vibration caused by voltage excitation still exists and the vibrations caused by mechanical disturbance are enlarged. The coupled resonance vibration caused by mechanical disturbance and voltage excitation is discussed. The conditions of the occurrence of coupled resonance are studied.

예혼합 보염기 화염의 희박 화염 날림에 음향 가진이 미치는 영향에 관한 연구 (Analysis of Acoustic Excitation Effect on Lean Blowoff in Premixed Bluff Body Flames)

  • 정찬영;황정재;윤지수;김태성;신재익;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.149-151
    • /
    • 2014
  • The blowoff phenomenon was experimentally investigated in a ducted combustor according to the acoustic excitation. The blowoff equivalence ratio rapidly increases at specific acoustic excitation frequencies. A resonance phenomenon occurs when the excitation frequency approaches the harmonic frequency of the combustor. The resonance increases the velocity fluctuation in the combustor and the infiltration velocity of the unburned gas in the shear layer. Consequently, the mixture velocity exceeds the burning velocity and the blowoff occurs at the higher equivalence ratio.

  • PDF

Modal Interactions in an Autoparametric Vibration Absorber to Narrow Band Random Excitation

  • Cho, Duk-Sang;Mo, Chang-Ki;Ban, Gab-Su;Lee, Kwang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.97-104
    • /
    • 2003
  • The main objectives of this study are to examine the random responses of a vibration absorber system with autoparametric coupling in the neighborhood of internal resonance subjected to narrow band random excitation by Gaussian closure scheme and to compare the results with those obtained by Monte Carlo simulation. The Monte Carlo simulation is found to support the main features of the nonlinear modal interaction in the neighborhood of internal resonance conditions. The jump phenomenon of the cantilever mode and saturation phenomenon of the main system are shown to occur if the excitation bandwidth is sufficiently small.

홀로그래피 간섭계를 이용한 복합적층판의 결함측정 (Nondestructive Inspection Method of Composite Laminated Plates by Holographic Interferometry)

  • 김석중;김재형;박현철
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3202-3218
    • /
    • 1994
  • Mode shapes and natural frequencies of vibrating laminated composite plates are taken using real-time and time-average holographic interferometry. Debonds and delamination in the laminated plates are measured nondestructively. During holographic testing of composite plates, it has been found that the conditions for the local resonance in debonds are strongly dependent on the frequency of excitation. A membrane resonance model was proposed to describe this behavior. Relations between characteristic length according to the size, shape of debonds and membrane resonance frequency are presented. Several experiments were performed to verify the membrane resonance model. The agreements between the predicted excitation frequency and the observed resonance frequency are good. The experimental results show that higher stresses and strains due to local resonance lead to the debond detection.

Triplet Excitation Energy Transfer in Choleic Acid Crystals

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2409-2413
    • /
    • 2007
  • Time resolved phosphorescence of Dibromobenzophenone (DBBP) choleic acid crystal was observed at 4.2 K as functions of excitation energy and delay time. The experimental results reveal that the energy transfer efficiency is dependent on the excitation energy, i.e. the density of acceptors sites. As the excitation energy or delay time increases, the resonance phosphorescence does not broaden and shift gradually, rather a broad luminescence band develops about 290 cm?1 to lower energy of the resonance phosphorescence. The observation implies that energy transfer from high to low energy sites in this system is controlled by emission of phonons or vibrons. The data of time resolved experiments were analyzed in terms of a mechanism involving direct donor-acceptor excitation transport by exchange coupling. It was concluded that an isotropic twodimensional exchange interaction topology is consistent with energy transfer in this system.

협대역 불규칙가진력을 받는 탄성진자계의 확률적 응답특성 (Stochastic Responses of a Spring-Pendulum System under Narrow Band Random Excitation)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.133-139
    • /
    • 2001
  • The nonlinear response statistics of an spring-pendulum system with internal resonance under narrow band random excitation is investigated analytically- The center frequency of the filtered excitation is selected to be close to natural frequency of directly excited spring mode. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The nonlinear phenomena, such as jump and multiple solutions, under narrow band random excitation were found by Gaussian closure method.

  • PDF

비선형 외팔보의 일대일 공진에서의 위상변화 (Phase Change for One to One Resonance of Nonlinear Cantilever Beam)

  • 김명구;박철희;조종두;조호준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

비선형 외팔보의 일대일 공진에서의 위상변화 (Phase Change for One to One Resonance of Nonlinear Cantilever Beam)

  • 박철희;조종두;조기철;김명구
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.48-54
    • /
    • 2007
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

동축공기 수소확산 화염에서의 화염과 와류의 상호작용 실험연구 (Experimental Study on Flame-Vortex Interactions in Turbulent Hydrogen Non-premixed Flames with Coaxial Air)

  • 김문기;오정석;최영일;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.86-94
    • /
    • 2006
  • This paper investigates the effects of acoustic forcing on NOx emissions and mixing process in the near field region of turbulent hydrogen nonpremixed flames. The resonance frequency was selected to force the coaxial air jet acoustically, because the resonance frequency is effective to amplify the forcing amplitude and reduce NOx emissions. When the resonance frequency is acoustically excited, a streamwise vortex is formed in the mixing layer between the coaxial air jet and coflowing air. As the vortex develops downstream, it entrains both ambient air and combustion products into the coaxial air jet to mix well. In addition, the strong vortex pulls the flame surface toward the coaxial air jet, causing intense chemical reaction. Acoustic excitation also causes velocity fluctuations of coaxial air jet as well as fuel jet but, the maximum value of centerline fuel velocity fluctuation occurs at the different phases of $\Phi$=$180^{\circ}$ for nonreacting case and $\Phi$=$0^{\circ}$ for reacting case. Since acoustic excitation enhances the mixing rate of fuel and air, the line of the stoichiometric mixture fraction becomes narrow. Finally, acoustic forcing at the resonance frequency reduces the normalized flame length by 15 % and EINOx by 25 %, compared to the flame without acoustic excitation.

  • PDF

정전기력 가진에 의한 외팔보형 탄소나노튜브 공진기의 비선형 동적 응답 (Nonlinear Dynamic Response of Cantilevered Carbon Nanotube Resonator by Electrostatic Excitation)

  • 김일광;이수일
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.813-819
    • /
    • 2011
  • This paper predicted nonlinear dynamic responses of a cantilevered carbon nanotube(CNT) resonator incorporating the electrostatic forces and van der Waals interactions between the CNT cantilever and ground plane. The structural model of CNT includes geometric and inertial nonlinearities to investigate various phenomena of nonlinear responses of the CNT due to the electrostatic excitation. In order to solve this problem, we used Galerkin's approximation and the numerical integration techniques. As a result, the CNT nano-resonator shows the softening effect through saddle-node bifurcation near primary resonance frequency with increasing the applied AC and DC voltages. Also we can predict nonlinear secondary resonances such as superharmonic and subharmonic resonances. The superharmonic resonance of the nano-resonator is influenced by applied AC voltage. The period-doubling bifurcation leads to the subharmonic resonance which occurs when the nano-resonator is actuated by electrostatic forces as parametric excitation.