DOI QR코드

DOI QR Code

Phase Change for One to One Resonance of Nonlinear Cantilever Beam

비선형 외팔보의 일대일 공진에서의 위상변화

  • Published : 2007.01.20

Abstract

The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

Keywords

References

  1. Pai, P. F. and Nayfeh, A. H., 1990, 'Nonlinear Non-planar Oscillations of a Cantilever Beam under Lateral Base Excitation', Int.J. Nonlinear Mechanics, Vol. 25, No.5, pp.455-474 https://doi.org/10.1016/0020-7462(90)90012-X
  2. Nayfeh, A. H. and Pai, P. F., 1989, 'Nonlinear Non-planar Parametric Responses of an inextentional Beam, Int.J. Nonlinear Mechanics' , Vol. 24, No. 2, pp. 139-158 https://doi.org/10.1016/0020-7462(89)90005-X
  3. Haigh, E. C. and King, W. W., 1972, 'Stability of Nonlinear Oscillations of an Elastic Rod' , J. Acost. Soc. Am. 52, pp.899-911 https://doi.org/10.1121/1.1913195
  4. Nayfeh, A. H. and Mook, D. T., 1979, Nonlinear Oscillations
  5. Abraham, R. H. and Shaw, C. D., 1992, 'Dynamics the Geometry of Behavior' , 2nd Ed., Addison-Wesley
  6. Blevins, R. D., 1979, 'Formulas for Natural Frequency and Mode Shape', Van Nostrand Reinhold
  7. Cusumano, J. P., 1990, 'Low-dimensional, Chaotic Nonplanar Motions of the Elastica' , Ph. D. Thesis, Cornell University, New York
  8. Pak, C. H., Rand, R. H. and Moon, F. C., 1992, 'Free Vibrations of a Thin Elastica by Normal Modes' , Nonlinear Dynamics, Vol. 3, pp. 347-364 https://doi.org/10.1007/BF00045071
  9. Crespo da Silva, M. R. M. and Glynn, C. C .. 1978, 'Nonlinear Flexural- Torsional Dynamics of Inextensional Beam-I. Equations of Motion' , J. Struct. Mech. 6., pp. 437-448 https://doi.org/10.1080/03601217808907348
  10. Lee, Y. S., Joo, J. M. and Pak, C. H., 1996, 'On the Chaotic Vibrations of Thin Beams by a Bifurcation Mode', Autumn Annual Conference of Korean Soc. Noise and Vibration Engineering, pp. 121-128
  11. Ali H. Nayfeh, 2000, 'Nonlinear Interactions Analytical', Computational and Experimental Methods, JOHN WILEY & SONS, INC., pp. 181-304
  12. Kim, M G., Lee, H. S. and Cho, C. D., 2005, 'Non-linear Phenomenon in the Response of Circle Cantilever Beam', Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 15, No.4, pp.445-451 https://doi.org/10.5050/KSNVN.2005.15.4.445
  13. Choi, Y. S., Seo, K. S. and Woo, Y. J., 2003, 'Nonlinear Vibration of a Cantilever Beam Subjected to Electromagnetic Forces' , KSME A, Vol. 27, No. 1. pp. 48-57 https://doi.org/10.3795/KSME-A.2003.27.1.048
  14. Lim, J.-H., Jung, G.-C. and Choi, Y.-S., 2003, 'Nonlinear Dynamic Analysis of Cantilever Tube Conveying Fluid with System Identification' , KSME International Journal, Vol. 17, No. 12, pp, 1994-2003
  15. Kim, M-G., Pak, C.-H. and Cho, C. D. 2006, 'Non-planar Non-linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam, Journal of the KSME, Vol. 30, No. 2, pp. 171-178 https://doi.org/10.3795/KSME-A.2006.30.2.171
  16. Kim, M-G., Pak, C.-H. and Cho, C. D. 2005, 'One to One Resonance on the Quadrangle Cantilever Beam' , Journal of the KSME, Vol. 15, No.7, pp. 851-858

Cited by

  1. Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems vol.26, pp.7, 2016, https://doi.org/10.5050/KSNVE.2016.26.7.795