• Title/Summary/Keyword: resonance effect(Q)

Search Result 36, Processing Time 0.027 seconds

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

Effect of Number of Measurement Points on Accuracy of Muscle T2 Calculations

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.207-214
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of the number of measurement points on the calculation of transverse relaxation time (T2) with a focus on muscle T2. Materials and Methods: This study assumed that muscle T2 was comprised of a single component. Two phantom types were measured, 1 each for long ("phantom") and short T2 ("polyvinyl alcohol gel"). Right calf muscle T2 measurements were conducted in 9 healthy male volunteers using multiple-spin-echo magnetic resonance imaging. For phantoms and muscle (medial gastrocnemius), 5 regions of interests were selected. All region of interest values were expressed as the mean ${\pm}$ standard deviation. The T2 effective signal-ratio characteristics were used as an index to evaluate the magnetic resonance image quality for the calculation of T2 from T2-weighted images. The T2 accuracy was evaluated to determine the T2 reproducibility and the goodness-of-fit from the probability Q. Results: For the phantom and polyvinyl alcohol gel, the standard deviation of the magnetic resonance image signal at each echo time was narrow and mono-exponential, which caused large variations in the muscle T2 decay curves. The T2 effective signal-ratio change varied with T2, with the greatest decreases apparent for a short T2. There were no significant differences in T2 reproducibility when > 3 measurement points were used. There were no significant differences in goodness-of-fit when > 6 measurement points were used. Although the measurement point evaluations were stable when > 3 measurement points were used, calculation of T2 using 4 measurement points had the highest accuracy according to the goodness-of-fit. Even if the number of measurement points was increased, there was little improvement in the probability Q. Conclusion: Four measurement points gave excellent reproducibility and goodness-of-fit when muscle T2 was considered mono-exponential.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

Synthesis of 3-(1,8-Naphthalimido) Propyl Methacrylate-GMA Copolymers and Their Physical Properties (3-(1,8나프탈이미도)프로필메타아크릴레이트와 GMA공중합체의 합성과 물성)

  • Lim, Deok-Jum;Oh, Dae-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.592-601
    • /
    • 2013
  • This work, which was about the synthesis of 3-(1,8-Naphthalimido) propyl methacrylate and GMA copolymers and their physical properties, investigated the compositions of the copolymer, the reactivity ratios of the monomer, resonance effect(Q), polar effect(e) and fluorescence effect of 1,8-naphthalicanhydride. Azobisisobutyronitronitryl(AIBN) as an initiator was employed at $60^{\circ}C$ with dimethylformamide(DMF) of solvent for the copolymerization of NIPM. $r_1$ was found to be higher than $r_2$ from the reactivity ratios of the monomer obtained from F-R and K-T methods. NIPM was found to be more copolymerized than GMA. The fluorescence spectrums of these polymers showed a weak monomer fluorescence band at 380 nm and a strong excimer fluorescence band at about 460 nm.

Analysis of Resonance Based Micromechanical Bio-Chemical Sensing Structures (공진 기반 마이크로기계 생화학 센싱 구조물의 해석)

  • Yeo, Min-Ku;Shin, Yoon-Hyuck;Yim, Hong-Jae;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1767-1772
    • /
    • 2008
  • A microcantilever is a well-known MEMS structure for sensing bio-chemical molecules. When bio-chemical molecules are adsorbed on the microcantilever's surface, resonance frequency shift is generated. There are two issues in this phenomena. The first one is which one between mass change and surface stress change effects is more dominant on the resonance frequency shift. The second one is what will be the performance change when the boundary condition is changed from cantilevers to double clamped beams. We have studied the effect of surface stress change and compared it with that of mass change by using FEM analysis. Furthermore, for microstructures having different boundary conditions, we have studied Q-factor, which determines the detection limit of micro/nano mechanical sensors.

  • PDF

An Optimal Damping Control Algorithm of Direct Two-level Inverter for Miniaturization and Weight Reduction of Auxiliary Power Supply on Railway Vehicle

  • Lee, Chang-hee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2335-2343
    • /
    • 2018
  • This paper proposes an optimal damping control algorithm of the DTI (Direct Two-level Inverter) to miniaturize and reduce the weight of auxiliary power supply for railway vehicles. The conventional auxiliary power supply for railway vehicles uses a DC-DC converter to maintain the inverter input power from the line voltage smoothly. The proposed topology does not use a DC-DC converter for reducing of manufacturing and maintenance costs. It also proposes a DTI topology removed damping resistors that generate ground signal noise in a certain period. At this time, a resonance phenomenon of DC-link voltage occurs due to variation of the inductive load, and a method of controlling the resonance phenomenon of DC-link voltage is required. In order to suppress the resonance phenomenon of the DC-link voltage, at a point before resonance occurs, this paper introduces an algorithm to suppress the resonance phenomenon of DC-link voltage by compensating the resonance component of the q axis voltage of the synchronous reference frame. The proposed algorithm verifies the effect through simulation and experiment.

A new approach to quantify paraquat intoxication from postmortem blood sample by using 1H qNMR method

  • Hong, Ran Seon;Cho, Hwang Eui;Kim, Dong Woo;Woo, Sang Hee;Choe, Sanggil;Kim, Suncheun;Hong, Jin Tae;Moon, Dong Cheul
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • For a case study of suspected paraquat intoxication, we developed a simple and rapid method of $^1H$ qNMR to determine the mili-molar amount of paraquat in postmortem blood samples. There were no interfering signals from endogenous compounds in the chemical shift of paraquat and diquat (internal standard). The amount of sample used ranged from 0.25 mM to 10.0 mM. Diquat, which has similar physicochemical properties with paraquat, was chosen as an internal standard. The NMR experimental conditions, relaxation delay time and CPMG spin-echo pulse sequence were optimized. The developed method was validated in terms of specificity, accuracy, precision, matrix effect, recovery, limit of detection (LOD), and low limit of quantification (LLOQ). The proposed qNMR method provided a simple and rapid assay for the identification and quantification of the quaternary ammonium herbicide, "paraquat" in postmortem blood samples. This method was tested by using the blood from the heart of a man who was intoxicated with paraquat. In this particular case, the level of paraquat was 1.07 mM in the blood. For the determination of quaternary ammonium herbicides, qNMR could also be used to provide a better understanding of the currently available techniques.

The Effect of Coating Material of Copper-wire RF Coil on the Signal-to-Noise Ratio in MR Images (RF코일로 사용된 구리선 코팅재질이 자기공명영상에서의 신호대잡음비에 미치는 영향)

  • Lee, Hyeon-Seung;Moon, Hye-Young;Chang, Yong-Min;Hong, Kwan-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • Purpose : To investigate the effect of coating material in RF coil, which is one of main parts in MRI machine, on the Q-factor and SNR(signal-to-noise ratio) in MR images. Materials and Methods : RF coils with inner diameter of 1.7 mm were made by using copper wires coated with polyester, polyurethane, polyimide, polyamideimide, and polyester-imide, and by using copper wires in which coating materials had been removed. Q-factors of the RF coils were measured by network analyzer, and SNR values in the spin-echo MR images obtained by 600 MHz (14.1 T, Bruker DMX600) micro-imaging system for the coated and uncoated cases. Results : The measured SNRs were almost same for the RF coils with coat-removed copper wires, however SNRs and Q-factors were different for the coated cases depending on the coating material. They were maximized in the polyurethane-coated case in which the SNR was > 30% greater than polyester-coated case. Conclusion : We made solenoid-type RF coils which were easily used for MR micro-imaging in Bruker MRI probe. There was a significant coating-material dependence in the measured Q values and SNRs for the home-made RF coils. The study demonstrated that the choice of coating material of RF coil may be a critical factor in the MRI sensitivity based on SNR value.

  • PDF

Theoretical Analysis of FBARs Filters with Bragg Reflector Layers and Membrane Layer (브래그 반사층 구조와 멤브레인 구조의 체적 탄성파 공진기 필터의 이론적 분석)

  • Jo, Mun-Gi;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.41-54
    • /
    • 2002
  • In this study, we have analyzed the effects of the membrane layer and the bragg reflector layers on the resonance characteristics through comparing the characteristics of the membrane type FBAR (Film Bulk Acoustic Wave Resonator) and the one type bragg reflector layers with those of the ideal FBAR with top and bottom electrode contacting air by using equivalent circuit technique. It is assumed that ZnO is used for piezoelectric film, $SiO_2$ are used for membrane layer and low acoustic impedance layer, W are used for the high acoustic reflector layer and Al is used for the electrode. Each layer is considered to have a acoustic propagation loss. ABCD parameters are picked out and input impedance is calculated by converting 1-port equivalent circuit to simplified equivalent circuit that ABCD parameters are picked out possible. From the variation of resonance frequency due to the change of thickness of electrode layers, reflector layers and membrane layer it is confirmed that membrane layer and the reflector layer just under the electrode have the greatest effect on the variation of resonance frequency. From the variation of resonance properties, K and electrical Q with the number of layers, K is not much affected by the number of layers but electrical Q increases with the number of layers when the number of layers is less than seven. The electrical Q is saturated when the number of layers is large than six. The electrical Q is dependent of mechanical Q of reflector layers and membrane layer. Both ladder filter and SCF (Stacked Crystal Filters) show higher insertion loss and out-of-band rejection with the increase of the number of resonators. The insertion loss decreases with the increase of the number of reflector layers but the bandwidth is not much affected by the number of reflector layers. Ladder Filter and SCF with membrane layer show the spurious response due to spurious resonance properties. Ladder filter shows better skirt-selectivity characteristics in bandwidth but SCF shows better characteristics in insertion loss.

Free-Radical Copolymerization of Glycidyl Methacrylate with Phthalimidoethyl Acrylate : Synthesis and Determination of Monomer Reactivity Ratios (GMA와 프탈이미드아크릴레이트의 공중합체 합성과 반응성비)

  • Oh, Seung-Min;Oh, Dae-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.297-304
    • /
    • 2013
  • Free-radical copolymerization of glycidyl methacrylate(GMA) and N-phthalimidoethyl acrylate(NPEA) were carried out at $60^{\circ}C$ in dimethylformamide(DMF) solution in the presence of benzoylperoxide(BPO) at low conversion. The polymers were characterized by IR and $^1H$-NMR. The compositions of the copolymer was analyzed by ultra violet(UV/Vis) spectrophotometry. The reactivity ratios of the monomer was determined by the application of Fineman-Ross(FR) and Kelen-T$\ddot{u}$d$\ddot{o}$s(KT) methods. The monomer reactivity ratios of the system and Alfrey-Price's resonance effect(Q) and polar effect(e) value for NIEA were determined as follow. The reactivity ratios of the monomer obtained from FR and KT are found to be $r_1$=0.87, $r_2$=0.98 and $r_1$=0.88, $r_2$=0.99 respectively. The Q and e values of poly(GMA-co-NPEM) calculated from $r_1$ and $r_2$ was Q= 1.31, e=0.75 respectively.