• Title/Summary/Keyword: resistance screening

Search Result 411, Processing Time 0.037 seconds

Development of In Vitro Seedling Screening Method for Selection of Resistant Rice Against Bakanae Disease (벼 키다리병 저항성 검정을 위한 기내 유묘 검정법 개발)

  • Lee, Yong-Hwan;Lee, Myeong-Ji;Choi, Hyo-Won;Kim, Sung-Taek;Park, Jin-Woo;Myung, Inn-Shik;Park, Kyung-Seok;Lee, Se-Weon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.288-294
    • /
    • 2011
  • Rice bakanae disease, caused by the fungus Fusarium fujikuroi, is one of the most important rice diseases and distributed widely in Asia. Resistance screening system in rice field had been established. However, the evaluation results of the system vary according to the environmental conditions when the test is conducted. To develop precise and rapid evaluation method of disease resistance of rice to bakanae disease, in vitro screening system was attempted in this study. The six cultivars namely, 'Nampyeongbyeo', 'Junambyeo', 'Chucheongbyeo', 'Samcheonbyeo', 'Odaebyeo' and 'Hwasinbyeo' were tested. They were planted onto MS agar medium (10 ml) in test tube ($450\;mm{\times}{\phi}30\;mm$) and incubated at $25^{\circ}C$ and $28^{\circ}C$ in growth chamber under 12 hr light condition. Symptoms of over growth appeared a few days after seeding and then seedling were withered 2-3 weeks after over growth. The disease symptoms such as leaf dryness on top of rice were appeared in the 'Nampyeongbyeo' from 28 days at the concentration of $10^5$ spores/ml culturing at $28^{\circ}C$ and then withered completely 35 days after seeding. Whereas the other varieties withered entirely 19-23 days after seeding. Using the in vitro seedling screening method, 72 rice varieties were investigated to select resistant cultivar. Finally, two resistant cultivars ('Nampyeongbyeo' and 'Inwolbyeo') and seven moderately resistant cultivars ('Hwadongbyeo', 'Seokjeongbyeo', 'Samgwangbyeo', 'Sampyeongbyeo', 'Nonghobyeo', 'Heukjinjubyeo' and, 'Joanbyeo') were selected. If in vitro seedling screening method was used for evaluation of bakanae disease resistance, it would be completed within 35 days after sowing of rice seed.

Resistance of Plants to Herbicide (제초제(除草劑)에 대한 식물(植物)의 저항성(抵抗性))

  • Kim, Kil-Ung
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.96-106
    • /
    • 1984
  • Changes in weed floras and development of plant resistance to herbicides seemed to be closely related with increased and repeated use of herbicides. Herbicide use increased from 5% of the total consumption of pesticide in 1950 to 45% in 1976 in world basis. About 200 herbicides have been introduced to agriculture so as to control about 206 weed species which have been recorded important to human beings. In Korea, there was about 351 times in increased use of herbicides from 1966 to 1982. Interspecific selection by herbicide is mainly responsible for changes in weed floras and resulted in varying tolerance or susceptibility to herbicides, together with the changes of agricultural practices. The present trend toward continuous cereal cultivation throughout world will lead to type of changes in weed floras favorable to therophyte which can survive under unfavorable conditions as seeds rather than the types of geophyte which can survive unfavorable seasons as buds placed below soil surface. However, geophyte such as Sagitaria pygmaea, and Scirpus jurtcoides, and Cyperus rotundus and Cynodon dactylon in temperate warm climate become severe paddy weeds, presumably because of the removal of annual weeds by herbicides. Since differential tolerance to 2,4-D was firstly reported in Agrostis stolofera, about 30 species of weeds in 18 genera are presently known to have developed resistance to triazine herbicides. Resistance of weed biotypes to triazine herbicide is not mainly due to limited absorption and translocation or to the difference in metabolism, but is the result of biochemical changes at the site of metabolic activity, such as a loss of herbicide affinity for triazine binding site in the photosystem II complex of the chloroplast membrane. Genetical study showed that plastid resistance to triazine was wholly inherited through cytoplasmic DNA in the case of Brassica campestris. Plant tissue culture method can be utilized as an alternate mean of herbicide screening and development of resistance variants to herbicides as suggested by Chaleff and Parsons. In this purpose, one should be certain that the primary target process is operational in cell culture. Further, there are a variety of obstacles in doing this type of research, particularly development of resistance source and it's regeneration because cultured cells and whole plants represent different developmental state.

  • PDF

Positional mapping for foxglove aphid resistance with 180k SNP array in soybean [Glycine max (L.) Merr.]

  • Park, Sumin;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Jung, Jin Kyo;Bilyeu, Kristin D.;Lee, Jeong-Dong;Kan, Sungtaeg
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.145-145
    • /
    • 2017
  • Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative genes to foxglove aphid resistance in wild soybean, PI 366121 (Glycine soja Sieb. and Zucc.). One hundred and forty-one F4:8 recombinant inbred lines developed from a cross between susceptible variety, Williams 82 and foxglove aphid resistance wild soybean, PI 366121 were used. The two type of resistance response, antibiosis and antixenosis resistance were evaluated through choice and no-choice test, graded by the degree of total plant damage and primary infestation leaf damage; a genome-wide molecular linkage map was constructed with 29,898 single-nucleotide polymorphism markers utilizing a Axiom(R) 180K soyaSNP array. Using inclusive composite interval mapping analysis for foxglove aphid resistance, one major candidate QTL on chromosome 7 was identified. The major QTL on chromosome 7 showed both antixenosis and antibiosis resistance responses. The newly identified major QTL was consistent with previously reported QTL, Raso2, which showed around 5 times narrow down interval range with 8 candidate genes. Furthermore, total 1,115 soybean varieties including Glycine soja and Glycine max were exposed to germplasm screening, and 31 varieties, which showed significant antibiosis type foxglove aphid resistance were identified. This result could be useful in breeding for new foxglove aphid resistant soybean cultivars and developing novel insecticides.

  • PDF

Identification of Novel Source of Resistance and Differential Response of Allium Genotypes to Purple Blotch Pathogen, Alternaria porri (Ellis) Ciferri

  • Nanda, Satyabrata;Chand, Subodh Kumar;Mandal, Purander;Tripathy, Pradyumna;Joshi, Raj Kumar
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.519-527
    • /
    • 2016
  • Purple blotch, caused by Alternaria porri (Ellis) Cifferi, is a serious disease incurring heavy yield losses in the bulb and seed crop of onion and garlic worldwide. There is an immediate need for identification of effective resistance sources for use in host resistance breeding. A total of 43 Allium genotypes were screened for purple blotch resistance under field conditions. Allium cepa accession 'CBT-Ac77' and cultivar 'Arka Kalyan' were observed to be highly resistant. In vitro inoculation of a selected set of genotypes with A. porri, revealed that 7 days after inoculation was suitable to observe the disease severity. In vitro screening of 43 genotypes for resistance to A. porri revealed two resistant lines. An additional 14 genotypes showed consistent moderate resistance in the field as well as in vitro evaluations. Among the related Allium species, A. schoenoprasum and A. roylei showed the least disease index and can be used for interspecific hybridization with cultivated onion. Differential reaction analysis of three A. porri isolates (Apo-Chiplima, Apn-Nasik, Apg-Guntur) in 43 genotypes revealed significant variation among the evaluated Allium species (P = 0.001). All together, the present study suggest that, the newly identified resistance sources can be used as potential donors for ongoing purple blotch resistance breeding program in India.

An in vitro Actinidia Bioassay to Evaluate the Resistance to Pseudomonas syringae pv. actinidiae

  • Wang, Faming;Li, Jiewei;Ye, Kaiyu;Liu, Pingping;Gong, Hongjuan;Jiang, Qiaosheng;Qi, Beibei;Mo, Quanhui
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.372-380
    • /
    • 2019
  • Pseudomonas syringae pv. actinidiae (Psa) is by far the most important pathogen of kiwifruit. Sustainable expansion of the kiwifruit industry requires the use of Psa-tolerant or resistant genotypes for the breeding of tolerant cultivars. However, the resistance of most existing kiwifruit cultivars and wild genotypes is poorly understood, and suitable evaluation methods of Psa resistance in Actinidia have not been established. A unique in vitro method to evaluate Psa resistance has been developed with 18 selected Actinidia genotypes. The assay involved debarking and measuring the lesions of cane pieces inoculated with the bacterium in combination with the observation of symptoms such as callus formation, sprouting of buds, and the extent to which Psa invaded xylem. Relative Psa resistance or tolerance was divided into four categories. The division results were consistent with field observations. This is the first report of an in vitro assay capable of large-scale screening of Psa-resistance in Actinidia germplasm with high accuracy and reproducibility. The assay would considerably facilitate the breeding of Psa-resistant cultivars and provide a valuable reference and inspiration for the resistance evaluation of other plants to different pathogens.

Progeny Analysis and Selection of Tomato Transformants with patII Gene linked to Inherent Disease Resistance Gene (제초제 저항성 유전자와 기존 병 저항성 유전자가 연관된 형질전환 토마토 개체 선발 및 후대분석)

  • Ahn, Soon-Young;Kang, Kwon-Kyoo;Yun, Hae-Keun;Park, Hyo-Guen
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.345-351
    • /
    • 2011
  • This study was carried out to develop a model system using selection method for disease resistant plant breeding programs using a herbicide bialaphos-resistant patII gene as a gene-based marker. Spraying bialaphos could eliminate the susceptible plants from the segregating populations such as ${F_2}^{\prime}s$ and thereafter. Tomato cv. Momotaro-yoke was transformed with patII gene 60 independent transformants were acquired. Total 42 transformants were analyzed in transgene copy numbers by Southern blotting and the segregation ratios for the bialaphos resistance. Statistical analysis revealed that the transgene copy numbers and the segregation ratios were not always coincided, especially having the tendency of underestimating the real numbers of the transgenes in the multicopy lines. A two-stepwise screening method was applied to select $T_1$ tomato plants which linked the transgenic patII to a disease resistance gene (I2 and Ve). Based on the resistant to susceptible ratios, T-20 plant was finally selected due to the estimated linkage 12-13 cM between the patII gene to the I2 gene on chromosome 11. This newly developed system could be applied to any economical crop in breeding programs.

Determination of an Effective Method to Evaluate Resistance of Bottle Gourd Plant to Fusarium oxysporum f. sp. lagenaria (박 덩굴쪼김병 저항성 검정조건 구명)

  • Kim, Sang Gyu;Lee, Oak Jin;Lee, Sun Yi;Kim, Dae Young;Huh, Yun-Chan;An, Se Woong;Jang, Yoon ah;Moon, Ji hye
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.96-102
    • /
    • 2020
  • Fusarium wilt caused by Fusarium oxysporum is a devastating disease limiting production of watermelon in Korea. The best way to control diseases is to use resistant gourd rootstock on watermelon. This study was conducted to establish an efficient screening method for resistant bottle gourd to Fusarium oxysporum f. sp. lagenaria. To develop an efficient inoculation method, incubation temperature after inoculation (15, 20, 25, and 30℃), inoculum concentration (1 × 105, 5 × 105, 1 × 106, and 5 × 106 conidia·mL-1), and growth stages of seedlings (7, 10, 13, and 16 days) was investigated. Disease development of Fusarium wilt of bottle gourd was little affected by differences in incubation temperature and growth stages of seedlings. But resistant lines were more susceptible and appeared more severe symptoms at the higher inoculation level. Taken together, we suggest that an effective screening method for resistant gourd plant to Fusarium wilt is to dip the roots of 10-day old seedlings in spore suspension of 1 × 105 - 1 × 106 conidia·mL-1, for 30 min, to transplant the seedlings into a non-infected soil, and then to incubate the inoculated plants in a growth room at 25℃ for 3 weeks to develop Fusarium wilt.

Development of Effective Screening Method and Evaluation of Radish Cultivars for Resistance to Fusarium oxysporum f. sp. raphani (효율적인 무 시들음병 저항성 검정법 개발 및 무 품종들의 병 저항성 평가)

  • Baik, Song-Yi;Kim, Jin-Cheol;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.148-152
    • /
    • 2010
  • To establish the efficient screening method for resistance of radish to F. oxysporum f. sp. raphani, we investigated the development of Fusarium wilt of two radish cultivars, 'Songbaek' (susceptible) and 'Tokwang' (moderately resistant), according to several conditions such as inoculation methods, inoculum concentrations, and dipping periods of radish roots in spore suspension. By infected soil and soil-drenching inoculation methods, Fusarium wilt did not occur on the seedlings of both cultivars. In root dipping inoculation method using cut or non-cut roots of radish plants, the cut roots were easily infected by the pathogen than non-cut roots. And the disease development of two cultivars represented significant difference in non-cut root method. On the other hand, disease severity of Fusarium wilt on radish seedlings according to inoculum concentration increased in a dose-dependant manner, regardless of dipping periods. Using screening method established from the results, the 41 commercial radish cultivars were evaluated the degree of resistance to F. oxysporum f. sp. raphani. Among them, 6 radish cultivars were resistant, 22 cultivars were moderately resistant, and 13 cultivars were susceptible to Fusarium wilt.

Screening for resistance of Brassicaceae plant resources to clover cyst nematode (클로버씨스트선충에 대한 배추과 유전자원의 저항성 스크리닝)

  • Ko, Hyoung-Rai;Park, Eunhyeong;Kim, Eun-Hwa;Park, Se-Keun;Kang, Heonil;Park, Byeongyong
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.329-335
    • /
    • 2021
  • Chinese cabbage fields have been damaged by cyst nematodes in highland of Gangwon province in Korea since the year 2011, and clover cyst nematode (CCN) is one of the most problematic cyst nematodes in the crop. To investigate the plant resources for breeding new Chinese cabbage cultivar, which is resistant to CCN, screening for resistance of fifty-seven Brassicaceae plant resources to CCN was conducted. Among the plant resources, fifty-four plant resources (Brassica rapa subsp. pekinensis, B. rapa, Brassica sp., B. juncea, B. carinata, B. rapa subsp. nipposinica, B. rapa subsp. narinosa, B. rapa var. perviridis, B. rapa var. perviridis, B. napus var. napobrassica, and Eruca sativa) were very susceptible to CCN and the number of females on roots was more than 300. Two plant resources (B. carinata and B. tournefortii) with more than 100 females on roots were susceptible to CCN. However, African mustard (B. tournefortii, Korean Genebank accession no. IT218058) was resistant to CCN because of the small number of females (4±1.8) on roots. This study showed that African mustard (IT218058) was valuable as a breeding material for Chinese cabbage, which is resistant to CCN.

Establishment of an Efficient Screening Methods for Resistance of Chinese Cabbage to Clubroot Disease (배추 뿌리혹병의 효율적인 저항성 검정법 확립)

  • Soo Min Lee;Hee Soo Jung;Hun Kim;Heung Tae Kim;Gyung Ja Choi
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.236-246
    • /
    • 2024
  • Clubroot caused by Plasmodiophora brassicae is an important disease of crucifer crops worldwide. This study aimed to establish an efficient screening method to determine resistant cultivars of Chinese cabbage against P. brassicae. To do this, we investigated the virulence of seven P. brassicae isolates using seedlings of susceptible Chinese cabbage cultivar. The isolates exhibited different virulence in the plants and were divided into three groups based on their virulence. When we explored the disease occurrence in Chinese cabbage seedlings according to photoperiod after inoculation of P. brassicae and incubation temperature, the plants with all-day light showed higher disease severity than seedlings cultivated under 14 hr of light a day. The occurrence of clubroot disease was most severe at 25℃, followed by 20℃ and 18℃, but the fresh weight of clubroot of the seedlings cultivated at 20℃ was the highest, followed by plants grown at 25℃ and 18℃. When the seedlings of two commercial resistant cultivars were inoculated with the mixed spore suspensions of two different pathotype isolates of P. brassicae, disease severity increased as the spore concentration of the susceptible P. brassicae isolate among the two strains increased, suggesting that the clubroot development by different pathotype isolates was independent and not influenced by each other. Taken together, our results provide a faster and more accurate screening methods to determine the resistance of Chinese cabbage against P. brassicae.