• Title/Summary/Keyword: resistance heating properties

Search Result 178, Processing Time 0.026 seconds

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.

Flexible Carbon/PDMS Composite for the Application of Sensor (신축성을 가진 Carbon/PDMS 복합체의 센서 응용 연구)

  • Lee, Junho;Park, Kyoung Ryeol;Mhin, Sungwook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.73-77
    • /
    • 2021
  • Flexible electrodes for wearable devices have been actively studied in not only achieving mechanical/electrical stability, but also providing various functionalities for extending its industrial application. In this study, a flexible carbon/PDMS composite is prepared by addition of carbon black (CB) as a conductive filler, and effect of CB with different contents on electrical properties of the composite was investigated for the application of flexible electrodes, temperature sensor and heater. With increase of CB contents, resistivity of the carbon/PDMS was increased, and excellent durability was observed, confirmed by repetitive stretching deformation test. Resistance increase of the carbon/PDMS with temperature reveals the property of positive temperature coefficient, which can be applied for temperature sensor. Also, joule heating on the carbon/PDMS was observed when electrical potential was applied, indicating the applicability of the carbon/PDMS for heater.

Numerical Heat Transfer Analysis of die Electrowinning Cell in the Pyroprocessing (파이로프로세스 전해제련장치의 열전달 해석)

  • Yoon, Dal-Seong;Paek, Seung-Woo;Kim, Si-Hyung;Kim, Kwang-Rag;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Electrowinning process recovers uranium with actinide elements from spent fuels and is a key step in the Pyroprocessing because of proliferation resistance. An analysis of heat transfer of the Electrowinning cell was conducted to develop basic tool for designing engineering-scale Electrowinner. For the calculation of the heat transfer, ANSYS CFX commercial code was adapted. As a result of the calculation, the vertical Heating Zone length had great effect upon temperature of LiCl-KCl eutectic salt. To maintain constant temperature in the salt, the Heating Zone length should be three times longer than the height of the salt. However, the argon and salt temperatures were barely affected by the Cooling Zone length. The temperature under the Cell cover was mainly influenced by the number of the cooling plates. When the cooling plates were installed more than the number of 5, temperature under the cover was maintained below $250^{\circ}C$. These temperature properties had similar tendency toward the temperature of the Cell which was measured from experiments, Simulated heat transfer information from this study could be used to design engineering-scale Electrowinner.

  • PDF

Analysis of Frequency Response Curve for Conduction-Cooled Power Capacitors (전도 냉각 파워 커패시터의 주파수 응답 곡선 분석)

  • An, Gyeong Moon;Kim, Hiesik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.123-130
    • /
    • 2016
  • High-frequency induction heating equipment can heat the metal by applying a High-Frequency power to the resonant circuit. The resonance circuit is composed of the work coil and the conduction-cooled power capacitor, it influences the performance of the heat treatment equipment according to the characteristics of the capacitor. However, dependence on conduction-cooled power capacitor's import is high due to lack of core technology research and development. Minimizing the generation of internal heat transmitted inside during LC resonance, reduce the reactive power loss, there is a need for a capacitor within the voltage characteristic outstanding. To implement localization it is vital that prior study of the analysis on the frequency response characteristic for the finished capacitor advanced manufacturer be implemented. Studying the interpolation method to read the value at any point of the characteristic curve for a given log-log scale was applied to the analysis tool of the capacitor by my proposed algorithm. The simulation for reproducing frequency response curves was attempted by assuming a capacitor in a simplified series equivalent RC circuit to obtain the equivalent series resistance value. It was confirmed that the reproduction rate was the result value above 83% as compared to the simulation of the properties and characteristics on the actual reactive power for Peak value, and that the algorithm can be applicable when analyzing and predicting the characteristic curves of a simpled model capacitor.

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

Mechanical Characteristics and Microstructures of Hypereutectic Al-17Si-5Fe Extruded Alloys Prepared by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-17Si-5Fe 합금 압출재의 미세조직 및 기계적 특성)

  • KIM, Tae-Jun;LEE, Se-dong;BECK, Ah-Ruem;KIM, Duck-Hyun;LIM, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.26-31
    • /
    • 2019
  • In this study, the mechanical characteristics and microstructure of hypereutectic Al-17Si-5Fe extruded alloys prepared by a rapid solidification process (RSP) were investigated. The hypereutectic Al alloy was fabricated by means of RSP and permanent casting. For RSP, the Al alloy melted at $920^{\circ}C$, cooling the specimens at a rate of $10^6^{\circ}C/s$ when the RSP was used, thus allowing the refining of primary Si particles more than when using permanent casting, at a rate of about 91%. We tested an extrusion RSP billet and a permanent-cast billet. Before the hot-extrusion process, heating to $450^{\circ}C$ took place for one hour. The samples were then hotextruded with a condition of extrusion ratio of 27 and a ram speed of 0.5 mm/s. Microstructural analyses of the extruded RSP method and the permanent casting method were carried out with OM and SEM-EDS mapping. The mechanical properties in both cases were evaluated by Vickers micro-hardness, wear resistance and tensile tests. It was found that when hypereutectic Al-17Si-5Fe alloys were fabricated by a rapid solidification method, it becomes possible to refine Si and intermetallic compounds. During the preparation of the hypereutectic Al-17Si-5Fe alloy by the rapid solidification method, the pressure of the melting crucible was low, and at faster drum speeds, smaller grain alloy flakes could be produced. Hot extrusion of the hypereutectic Al-17Si-5Fe alloy during the rapid solidification method required higher pressure levels than hot extrusion of the permanent mold-casted alloy. However, it was possible to produce an extruded material with a better surface than that of the hot extruded material processed by permanent mold casting.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.