• Title/Summary/Keyword: resin acid

Search Result 774, Processing Time 0.027 seconds

The effect of chlorhexidine varnish application on the shear bond strength of orthodontic brackets (클로르헥시딘 바니쉬의 적용이 교정용 브라켓의 전단접착강도에 미치는 영향)

  • Im, Dong-Hyuk;Kim, Tae-Woo;Chang, Young-Il;Nahm, Dong-Suk;Yang, Won-Sik;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.215-222
    • /
    • 2000
  • The purpose of this study was to determine whether the application of chlorhexidine varnish affects the shear bond strength and failure pattern of orthodontic brackets or not. The experimental group consisted of 22 human premolars which extracted after chlorhexidine varnish application (4 times for 1 week interval) in vivo, and the control group consisted of 22 human premolars which extracted without any pre-treatment. After all teeth were etched with $37\%$ phosphoric acid gel, metal orthodontic brackets (Q-3002, RMO, USA) were bonded to each tooth using auto-polymerizing orthodontic resin (Ortho-One, Bisco, USA) with the same bonding procedure. The shear bond strength was measured with Instron universal testing machine (model 4466, Instron Ltd., England), and the failure pattern of each bracket was examined with Scanning Electron Microscope (SM 840A, JEOL, Japan). The data were analysed statistically with t-test. The results were as follows : 1. Application of chlorhexidine varnish had no significant effect on the shear bond strength of the orthodontic bracket. 2. There was no significant difference in the failure pattern of orthodontic bracket between the experimental group and the control group.

  • PDF

Studies on the Fermentative Production of Inosine-5′-monophosphate by Microorganisms (Part 1) Derivation of 5′-IMP Producing Mutants from Brevibacterium ammoniagenes (미생물에 의한 5′-이노신산의 생산에 관한 연구 (제1보) 5′-이노신산 생산균주의 분리)

  • Bae, Jong-Chan;Gong, Woon-Young;Son, Chung-Hong;Jang, Wook;Yoo, Ju-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.3
    • /
    • pp.119-125
    • /
    • 1979
  • As the first step of domestic developmint of the nucleic acid-related compounds, purine base required auxotrophs from Brevibacterium ammoniagenes ATCC 6872 were derived by the ultraviolet irradiation or the treatment of N-methyl-N'-nitro-N-nitroso guanidine (NTG), diethyl sulfate (DES), and ethylme-thyl sulfate (EMS). The optimum conditions of mutation by means of several mutagens were induced respectively. The yield of mutants was 0.083% by the ultraviolet irradiation, 0.67% by the NTG treatment, 1.1% by the DES treatment, and 0.45% by the EMS treatment. Six strains among 239 auxotrophs were screened out to accumulate 5'-lMP in the culture broth. Cry-stalline 5'-lMP was isolated from the culture broth of Brevifbacterium ammoniagenes adnine-guanine less mutant D-21530 by the use of anion exchange resin, Amberlite IRA-402, and it was identified physically and chemically as 5'-inosinic acid.

  • PDF

The Study on the Weathering Characteristics about Epoxy Adhesive for the Adhesion and Restoration of Metallic Cultural Assets (금속문화재 접합 복원용 에폭시 접착제의 내후성 연구)

  • Lee, Ji-Hyun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • After selecting five types of adhesive epoxy resin for metallic cultural assets such as $Araldite^{(R)}$ rapid type, $Devcon^{(R)}$, $Araldite^{(R)}$ SV427+HV427, $CDK^{(R)}$520, $Araldite^{(R)}$ AW106+HV953 which had already been studied, this paper approached more closely the problem of yellowing and the signal of aging with time passing by connecting the problems with the safety of metallic cultural assets. The change of physical properties according to the change of state of epoxy adhesives was investigated through the change of flexural strength and the change of surface hardness by artificially providing the possible environmental change factors such as ultra-violet ray, and acid base, and how the epoxy chemically changes in its ingredients by the environment was analyzed through FT-IR. As a result of the experiment, for the most part of adhesives brought about the physical change of flexural strength, the change of surface hardness, and the chemical change of chemical ingredients as the product of alcohol, which were respectively different according to the time of ultraviolet irradiation, and acid base change. Under most of the conditions, SV427+HV427 and $CDK^{(R)}$520 were fairly stabilized under each condition of weatherability, but it seems that they should be refrained from being applied in case that the area to restore is thin and wide because the degree of flexural strength of themselves is low. Also, it is found that the preservation environment is very important not only for artifacts but also for the preservation of resins sused for preservation treatment.

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

Mechanical Properties of Epoxy Paint using Oxidized Graphene Nanoplatelet as a Reinforcement (산화 그래핀 나노플레이트릿을 강화제로 사용한 에폭시 도료의 역학적 특성)

  • Seo, Won-Woo;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Bo-Kyeong;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.465-471
    • /
    • 2017
  • In this study, oxidized graphene nanoplatelet(GO) was prepared by oxidizing graphene nanoplatelet(GNP) with nitric acid in order to solve the problem of dispersion of GNP, one of nano materials. The surface chemical composition of the prepared GO was analyzed by fourier transform infrared spectroscopy(FT-IR) before incorporation into the epoxy paint, and the dispersibility in the solvent was confirmed. Meanwhile, GNP/Epoxy and GO/Epoxy paint were prepared by mixing GNP, GO with 0.1, 0.3, 0.5 and 1.0wt.% in epoxy paint and the mechanical properties were evaluated. As a result, GNP/Epoxy and GO/Epoxy paints showed better mechanical properties than Neat Epoxy which did not incorporate GNP, GO. Especially, when 0.3wt.% of GO was incorporated into epoxy resin, it showed higher tensile strength than Neat Epoxy. It was confirmed that acid treatment of GNP was effective in improving the mechanical properties of epoxy paint.

Isolation of Alliin in Garlic and Its Quantitative Determination by High Performance Liquid Chromatography and Studies on the Antimicrobial Efforts of Alliin and Ethanol Extracts from Korean Garlic(Alliium sativum L.) (마늘 중 고속 액체 크로마토그래피에 의한 알린의 분리 및 정량과 Alliin과 에탄올 추출물의 항균효과에 관한 연구)

  • 위성언
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.296-302
    • /
    • 2003
  • First. the purification and analysis of alliin in garlic from different origins by alliin-HPLC determination method were studied. Allinase in garlic was inactivated by heating in boiling water followed by extraction of alliin in garlic with 80% methanol. To remove free amino acids and alliin homologs in garlic, garlic extract was separated by cation exchange column which was packed with amberlite CG-120 resin using 40L d-water as eluent. Alliin in garlic extract was crystallized in a mixture of acetone (50$^{\circ}C$):H$_2$O:acetic acid=70:29:1 and then recrystallized in a mixture of acetone (50$^{\circ}C$):H$_2$O:acetic acid=75:24:1. Obtained alliin was identified by melting point. TLC, microscope observation and mass spectrometry. High performance liquid chromatography (HPLC) following pre-column derivatization of cystein derivatives with o-phthaldialdehyde/2-mercaptoethanol has succeessfully been applied to the analysis of various garlics. Each alliic of standard solution and garlic extract was derivatized to isoindole derivative by o-phthaldialdehyde /2-mercaptoethanol and then analyzed by HPLC. Six point calibration was done by using alliin peak area. Lineality was observed at 0 ∼ 1.0mg/ml of alliin concentration. Weighted regression line function was Y=6254X - 256077. By this function, alliin contents in various garlics were 0.34 ∼ 0.73% fresh weight. Second study was designed to evaluate the effects of garlic extracts of various concentrations on the growth of various pathogenes (Eubacterium limonsum, Bacteroides fragilis, Salmonella typhimurium, Salmonella typhi, Shigella sonnei, Kiebsiella pneumoniae, Enterobacter cloacae, Pserdomonas aeruginosa, Escherichia coli). For antimicrobial effects against microorganism, totally minimal inhibition concentrations (MIC) of alliin were from 5,000 to 20,000ppm. MIC of ethanol extract were 1,250 to 10,000ppm.

Geochemical Experiment for Effective Treatment of Abandoned Mine Wastes (광산폐석의 효과적 처리를 위한 지화학적 연구)

  • 이진국;이재영
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 1998
  • The geochemical experiments were carried out to investigate a removal effect of heavy metals in abdndoned metallic mine wastes, and to conceive a treatment techniques of them. In order to prevent contamination, experiment appature was made of acrylic acid resin and polyethylene which resist to acid and alkali. Experiment models are devided into four groups based on the system environments, distribution patterns and a kind of filling materials. The first group is background model(model I ) which is filled with waste only and opened to air. The second one is four layer group which is subdivided into two models, opened and closed systems, and the third mix group which is subdivided into three models based on mixing ratio of filling materials and system environment like a layered group. The forth is composed of two layer model, lower one composed of waste and upper one limestone chips. Solution drained from Model Ishows a high contents of heavy metals on the all terms of experiments. Among the models, however, the closed mix model V and Ⅶ show the most effective removal of heavy metals liberated from wastes. Models having different mixing ratios of filling materials on closed systems does not affect in heavy metal removal effect. But, the distribution patterns of filling materials affect very much on removal effect of heavy metals. The closed models with same constitution ratios and distribution patterns of filling materials show more and less effective removal to the open models.

  • PDF

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

THE EFFECT OF THE REMOVAL OF CHONDROITIN SULFATE ON BOND STRENGTH OF DENTIN ADHESIVES AND COLLAGEN ARCHITECTURE (비교원성 단백질이 상아질 접착제의 결합강도와 교원질의 형태에 미치는 영향)

  • Kim, Jong-Ryul;Park, Sang-Jin;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.211-221
    • /
    • 2010
  • Proteoglycan is highly hydrophilic and negatively charged which enable them attract the water. The objective of study was to investigate the effects of Proteoglycan on microtensile bond strength of dentin adhesives and on architecture of dentin collagen matrix of acid etched dentin by removing the chondroitin sulphate attached on Proteoglycan. A flat dentin surface in mid-coronal portion of tooth was prepared. After acid etching, half of the specimens were immersed in 0.1 U/mL chondroitinase ABC (C-ABC) for 48 h at $37^{\circ}C$, while the other half were stored in distilled water. Specimens were bonded with the dentin adhesive using three different bonding techniques (wet, dry and re-wet) followed by microtensile bond strength test. SEM examination was done with debonded specimen, resin-dentin interface and acid-etched dentin surface with/without C-ABC treatment. For the subgroups using wet-bonding or dry-bonding technique, microtensile bond strength showed no significant difference after C-ABC treatment (p > 0.05). Nevertheless, the subgroup using rewetting technique after air dry in the Single Bond 2 group demonstrated a significant decrease of microtensile bond strength after C-ABC treatment. Collagen architecture is loosely packed and some fibrils are aggregated together and relatively collapsed compared with normal acid-etched wet dentin after C-ABC treatment. Further studies are necessary for the contribution to the collagen architecture of noncollagenous protein under the various clinical situations and several dentin conditioners and are also needed about long-term effect on bond strength of dentin adhesive.

The effect of using laser for ceramic bracket bonding of porcelain surfaces (세라믹 브라켓 부착 시 레이저를 이용한 포세린 표면처리 효과)

  • An, Kyung-Mi;Sohn, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Objective: The purpose of this study was to investigate the effect of using laser for ceramic bracket bonding of porcelain surfaces and to compare it with conventional treatment of porcelain surfaces. Methods: Ninety feldspathic porcelain specimens were divided into 9 groups of 10, with each group having different surface treatments performed. Surface treatment groups were orthophosphoric acid, orthophosphoric acid with silane, hydrofluoric acid, hydrofluoric acid with silane, sandblasted, sandblasted with silane, laser etched, laser etched with silane, and glazed surface served as a control group. In the laser etched groups, the specimens were irradiated with 2-watt superpulse carbon dioxide ($CO_2$) laser for 20 seconds. Ceramic brackets were bonded with light-cure composite resin and all specimens were stored in water at $37^{\circ}C$ for 24 hours. Shear bond strength was determined in megapascals (MPa) by shear test at 1 mm/minute crosshead speed and the failure pattern was assessed. For statistical analysis, one-way ANOVA and tukey test were used. Results: Statistical analysis showed significant differences between the groups. The HFA + S group showed the highest mean shear bond strength ($13.92{\pm}1.94\;MPa$). This was followed by SB + S ($10.16\;{\pm}\;1.27\;MPa$), HFA ($10.09\;{\pm}\;1.07\;MPa$), L + S ($8.25\;{\pm}\;1.24\;MPa$), L ($7.86\;{\pm}\;0.96\;MPa$), OFA + S ($7.22\;{\pm}\;1.09\;MPa$), SB ($3.41\;{\pm}\;0.37\;MPa$), OFA ($2.81\;{\pm}\;0.37\;MPa$), G ($2.46\;{\pm}\;1.36\;MPa$), Bond failure patterns of HFA and silane groups, except L + S, were cohesive modes in porcelain while adhesive failure was observed in the control group and the rest of the groups. Conclusions : A 2-watt superpulse $CO_2$ laser etching of porcelain surfaces can provide a satisfactory result for porcelain surface treatment for ceramic bracket bonding. Laser irradiation may be an alternative conditioning method for the treatment of porcelain surfaces.