• Title/Summary/Keyword: residual surface stresses

Search Result 202, Processing Time 0.03 seconds

The Characteristics of Friction and Wear for Automative Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • Oh Se-Doo;Ahn Jong-Chan;Park Soon-Cheol;Jung Won-Wook;Bae Dong-ho;Lee Young-Ze
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.118-126
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9(leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X-ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035m/s(50rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

  • PDF

Influence of Process Parameters on Residual Stress and Reducing Residual Stress in Drawn Wire (인발 선재의 잔류응력에 미치는 공정변수의 영향 및 잔류응력 완화)

  • Lee S. K.;Hwang W. H.;Kim B. M.;Bae C. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.704-711
    • /
    • 2005
  • The influence of process parameters in drawn wire on residual stresses was investigated. Based on a FE-simulation of the wire drawing process, the effects of process parameters such as semi-die angle, reduction, friction coefficient and bearing length on the residual stresses were investigated. The validity of the FE-simulation results was verified by the comparison of the previous simulated results with experimental data. In this study, semi-die angle and die reduction have significant effect on the residual stresses at the surface of drawn wire. Several methods such as, addition of axial tension, application of skin pass, straightening in multi-roll straightener etc, were suggested in the previous studies to reduce the residual stresses. In this study, the results show that the concurrent application of skin pass with low die reduction and low semi-die angle at the final stage of drawing operation reduces dramatically the both axial and hoop residual stresses after drawing

The Epoxy-metal Interphase and Its Incidence on Practical Adhesion

  • Roche, Alain Andre;Aufray, Maelenn
    • Journal of Adhesion and Interface
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Epoxy-amine liquid prepolymers are extensively applied onto metallic substrates and cured to obtain painted materials or bonded joint structures. Overall performances of such systems depend on the created interphase between the organic layer and the substrate. When epoxy-amine liquid mixtures are applied onto more or less hydrated metallic oxide layer, concomitant amine chemical sorption and hydroxide dissolution appear lending to the chelate formation. As soon as the chelate concentration is higher than the solubility product, these species crystallize as sharp needles. Moreover, intrinsic and thermal residual stresses are developed within painted or bonded systems. When residual stresses are higher than the organic layer/substrate adhesion, buckling, blistering, debonding may occur leading to a catastrophic drop of system performances. Practical adhesion can be evaluated with either ultimate parameters (Fmax or Dmax) or the critical strain energy release rate, using the three point flexure test (ISO 14679-1997). We observe that, for the same system, the ultimate load decreases while residual stresses increase when the liquid/solid time increases. Ultimate loads and residual stresses depend on the metallic surface treatment. For these systems, the critical strain energy release rate which takes into account the residual stress profile and the Young's modulus gradient remains quite constant whatever the metallic surface treatment was. These variations will be discussed and correlate to the formation mechanisms of the interphase.

  • PDF

Modeling of Metal Cutting Using Finite Element Method (유한요소법을 이용한 금속절삭의 모델링)

  • 김경우;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1799-1802
    • /
    • 2003
  • The commercial success of a new product is influenced by the time to market. Shorter product leadtimes are of importance in a competitive market. This can be achieved only if the product development process can be realized in a relatively small time period. New cutting inserts are developed by a time consuming trial and error process guided by empirical knowledge of the mechanical cutting process. The effect of previous cutting on chip formation and the surface residual stresses has been studied. The chip formation is not affected much. There is only a minor influence from the residual stress on the surface from tile first cutting on the second pass chip formation. Thus, it is deemed to be sufficient to simulate only the first pass. The influence of the cutting speed and feed on the residual stresses has been computed and verified by the experiments. It is shown that the state of residual stresses in the workpiece increases with the cutting speed. This paper presents experimental results which can be used for evaluating computational models to assure robust solutions. The general finite element code ABAQUS/Standard has been used in the simulations. A quasi-static simulation with adiabatic heating was performed. The path for separating the chip from the workpiece is predetermined. The agreement between measurements and calculation is good considering the simplifications introduced.

  • PDF

Development of the Bead Flush Method to Evaluate 3-Dimensional Welding Residual Stresses (3차원 용접잔류응력평가를 위한 비드플러시법의 개발)

  • Lee, Hyoung-No;Haruo, Nakamura;Hideo, Kobayashi
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.49-54
    • /
    • 2001
  • Measurement of welding residual stresses is one of important tasks to assess the structural integrity of welded structures. For operating components, especially, nondestructive techniques are required. By now, authors have proposed a new residual stress evaluation method, the bead flush method, where residual stresses are calculated from eigenstrain distribution determined by surface removal of reinforcement. In this paper, a brief description of the bead flush method is given and its utility and problem to be overcome are discussed. And also stabilization method of solution set of eigenstrain in inverse analysis is proposed.

  • PDF

A Study on the Mechanical States of Machined Surface by Considering Cutting Edge (절삭날을 고려한 절삭가공면의 기계적 성질에 관한 연구)

  • Kim, Joo-Hyun;Woo, Hee-Sun;Chang, Yoon-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.188-195
    • /
    • 1999
  • Cutting edge plays an important role in generating machined surface. In order to consider the geometric effects of the cutting edge on mechanical states, the concept of ploughing force and stagnation point was introduced which explains the generating mechanism of machined surface during cutting. The effects of edge radius and nose radius of cutting tool on the distribution of residual stresses of the machined surface having several hardness were studied. Good machined surface having high compressive residual surface stresses can be achieved if cutting tools having large edge radius and small nose radius are used for cutting work materials having high hardness with high depth of cut. The magnitude of edge radius and the hardness of work material also affected the shape of the chip in orthogonal cutting.

  • PDF

A Study on the Residual Stresses by the Hole Drilling Measuring in the WeldZone (용접부의 천공 측정법에 의한 잔류 응력에 관한 연구)

  • NamKoong, Chai-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.115-121
    • /
    • 2008
  • A knowloedge of the residual stress distribution at circumferential welds can increase the prediction accuracy of a fracture assessment in pipe lines. In this study, in order to predict the residual stress distribution in the circumferential butt-welded pipes were measured, using the hole-drilling strain gauge method. Their practical applications were performed in to two kinds of pipes. As the results, the following characteristics were found. On the inner surface of pipes, the circumferential and axial residual stresses were both tensile near the center line of welding and both of them changed from tensile to compressive as the distance from the center line increased. On the outer surface, however, the circumferential residual stress was shown to be tensile wile the axial residual stress was compressive near the center line of welding, and later they were revered at the region far away from the centerline.

Thermal Residual Stresses and Spring back Effects on the Frequency Selective Surface Embedded Composite Laminates (주파수 선택막이 삽입된 복합재 평판의 잔류 열응력과 스프링 백 효과)

  • Park, Kyoung-Mi;Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Yong-Bae;Kim, Yun-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.475-481
    • /
    • 2013
  • The residual stresses occur in the Frequency Selective Surface(FSS) embedded hybrid composite structures after co-curing due to mismatch among the coefficient of thermal expansions and stiffness values between the FSS and composite materials. The spring backs occur due to these residual stresses. Therefore, in this paper, the spring-backs caused by residual stresses in FSS embedded composite structures were studied with considering effect of symmetric and unsymmetric stacking sequence of composite laminates.

Evaluation of the Residual Stress of Thin Film Based on the Nanoindentation and Finite Element Analysis. (유한요소해석과 나노인덴테이션을 활용한 박막의 잔류응력 평가)

  • 황병원;김영석;박준원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.355-358
    • /
    • 2003
  • To estimate the residual stresses in the thin film and surface coatings, combined method based on nanoindentation and finite element (FE) analysis was developed. A simple equation for estimating the residual stress was composed of the hardness and the parameters which can be driven from the nanoindentation loading and unloading behaviors. FE analysis on the nanoindentation procedure under the various residual stress levels was performed to determine the parameters that included in the equation. The equation showed a good coincidence between the estimated residual stresses and those for the FE analysis. Thus the proposed method was considered as a useful method for estimating the residual stresses in the thin film without stress free specimen.

  • PDF

Metal/$Al_2O_3-SiO_2$ System Interface Investigations

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics (Al$_2$O$_3$-SiO$_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a Cu/Al$_2$O$_3$-SiO$_2$ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF