• Title/Summary/Keyword: residual structure

Search Result 1,073, Processing Time 0.027 seconds

Effects of High-temperature UNSM Treatment on Wear Resistance of Ti-6Al-4V Alloy Prepared by Selective Laser Melting (Selective Laser Melting 방식으로 적층가공된 Ti-6Al-4V 합금의 내마모성 특성에 미치는 고온 UNSM 처리 영향에 대한 연구)

  • Sanseong, Choongho;Ro, Jun-Suek;Pyoun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) treatment at room and high temperatures (RT and HT of 400℃) on friction and wear behavior of Ti-6Al-4V alloy prepared by selective laser melting (SLM) were investigated. The objective of this study is to improve the mechanical properties and frictional behavior of Ti-6Al-4V alloy by UNSM treatment. Dry friction and wear tests were conducted using a ball-on-disk method at RT with a bearing steel as the counter ball. Due to the high HT and UNSM treatment, the surface hardness tended to increase and surface roughness tended to reduce. X-ray diffraction (XRD) analysis showed that nanocrystallization structure and compressive residual stress were formed at the surface layer after UNSM treatment at both RT and HT. After UNSM treatment, it was observed that the wear rate was reduced by about 6% for the specimen treated at RT and a 28% reduction for the specimen treated at HT in comparison with the untreated one. Based on scanning electron microscope (SEM) images showed that the damage caused by fatigue wear occurred in the wear track of the heat-treated specimen, and it is believed to be the cause of the highest wear rate. Mechanical properties and wear resistance of Ti-6Al-4V alloy were improved and prospect of industrial application was confirmed. Further research is still required to improve the characteristics of SLM Ti-6Al-4V alloy to the level of wrought Ti-6Al-4V alloy.

A Study on the Statistical Predictability of Drinking Water Qualities for Contamination Warning System (수질오염 감시체계 구축을 위한 수질 데이터의 통계적 예측 가능성 검토)

  • Park, No-Suk;Lee, Young-Joo;Chae, Seonha;Yoon, Sukmin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.469-479
    • /
    • 2015
  • This study have been conducted to analyze the feasibility of establishing Contamination Warning System(CWS) that is capable of monitoring early natural or intentional water quality accidents, and providing active and quick responses for domestic C_water supply system. In order to evaluate the water quality data set, pH, turbidity and free residual chlorine concentration data were collected and each statistical value(mean, variation, range) was calculated, then the seasonal variability of those were analyzed using the independent t-test. From the results of analyzing the distribution of outliers in the measurement data using a high-pass filter, it could be confirmed that a lot of lower outliers appeared due to data missing. In addition, linear filter model based on autoregressive model(AR(1) and AR(2)) was applied for the state estimation of each water quality data set. From the results of analyzing the variability of the autocorrelation coefficient structure according to the change of window size(6hours~48hours), at least the window size longer than 12hours should be necessary for estimating the state of water quality data satisfactorily.

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF

Development of a Nutrition Quotient (NQ) equation modeling for children and the evaluation of its construct validity (어린이 영양지수 (NQ, Nutrition Quotient) 모형 개발과 구성타당도 평가)

  • Kim, Hye-Young;Kwon, Se-Hyug;Lee, Jung-Sug;Choi, Young-Sun;Chung, Hae-Rang;Kwak, Tong-Kyung;Park, Ju-Yeon;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.45 no.4
    • /
    • pp.390-399
    • /
    • 2012
  • The objective of this study was to develop and evaluate the construct validity of a Nutrition Quotient (NQ) for children. In a previous report (Kang, et al., 2012), the food behavior checklist for children's NQ, consisting of 19 items, was grouped into a 5-factor structure according to the exploratory factor analysis: balance, diversity, moderation, regularity, and practice. In this study, the construct validity of the NQ was assessed using a confirmatory factor analysis. Elementary school students (n = 1,393) from six large cities completed the NQ test. Indicator tests suggested an adequate model fit (goodness of fit index = 0.9613; adjusted GFI = 0.95; standardized root mean square residual = 0.0464; chi-square test statistics of < 0.001 p-value, 82.1), and item loadings were significant for all subscales (p < 0.05). The standardized path coefficients were used as the weights of the items. The NQ and the 5 factor scores of the student were calculated by the obtained weights of the questionnaire items. Logistic regression was applied to find the significant factors in order to affect a specific nutrient status. The receiver operation characteristic curve analyses were performed in order to find diagnostic cut-off points of the five factors. The food behavior checklist for children's NQ would be a handy and suitable instrument for evaluating dietary behaviors of Korean children.

A Study of Crust Structure at Svalbard Archipelago in Arctic Area by Using Gravity Data (중력자료를 이용한 북극 스발바드 군도의 지각구조연구)

  • Yu, Sang-Hoon;Yi, Song-Suk;Min, Kyung-Duck
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • Gravity characteristics are investigated in the vicinity of the DASAN scientific station, located at the Svalbard Archipelago, the Arctic using ArcGP data. Boundary effects of free-air gravity anomalies, which appeared generally at the continental margin, are erased after Bouguer correction was applied. Complete Bouguer anomalies produced after terrain correction by GrOPO30 show that gravity anomalies increase from continent to marine. This phenomena seem to be related to the rise of Moho discontinuity. The cut-off frequency of 0.16 was decided after power spectrum analysis and the gravity anomalies were divided into two parts. Residual anomalies in high frequency part show that characteristics of high values along the faults and of low values related to thick sediments in the continent. Characteristic is low values from basement subsidence of continental slope or thick sediments in the marine. The undulation of Moho discontinuity from 3-D inversion modeling show typical characteristics of continental margin that become higher from Svalbard archipelago to Knipovich ridge bordering Eurasian plate.

  • PDF

A Study on Plastic Fatigue of Structural Steel Elements under Cyclic Loading (반복하중을 받는 강구조 요소의 소성피로에 관한 연구)

  • Park, Yeon Soo;Park, Sun Joon;Kang, Sung Hoo;Yoon, Young Phil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.193-204
    • /
    • 1997
  • In order to quantify the relationships of the important physical factors relating failure to strong earthquake loading, the plastic fatigue problems for structural components under repeated loading were reviewed first. A new concept of very low cycle fatigue failure for structural components under severe cyclic excitations as in strong earthquakes was represented. Also, an experimental study was made of the very low cycle fatigue failure of structural steel elements. It was attempted to realize the ultimate failure in the course of loading repetitions of the order of several to twenty. The test specimen had a form of rectangular plate, representing a thin-plated element in a steel member as wide-flange cross section. It was subjected to uniaxial loading repeatedly, until complete failure takes place after undergoing inelastic buckling, plastic elongation and/or their combination. It was seen as a result that the state of the ultimate failure is closely related to the maximum strain at the extreme fiber in the cross section.

  • PDF

Bleaching of Kraft Pulp with Lignin - Degrading Enzymes

  • Harazono, Koich;Kondo, Ryuichrto;Sakai, Kokki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 1997
  • An unbleached hardwood kraft pulp was bleached in vitro with partially purified manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624 without the addition of MnSO$_4$ in the presence of oxalate, malonate or gluconate known as manganese chelator, When the pulp was treated without the addition of MnSO$_4$, the pulp brightness increased by about 10 points in the presence of 2 mM oxalate, but the brightness did not significantly increase in the presence of 50 mM malonate. Residual MnP activity decreased faster during the bleaching with MnP without MnSO$_4$ in the presence of malonate than in the presence of oxalate. Oxalate reduced MnO$_2$ which already existed in the pulp or was produced from $Mn^{2+}$ by oxidation with MnP and thus supplied $Mn^{2+}$ to the MnP system. Thus, bleaching of hardwood kraft pulp with MnP, using manganese originally existing in the pulp, became possible in the presence of oxalate, a good manganese chelator and reducing reagent. Properties of partially purified MnPs from liquid cultures of white rot fungi, Ganoderma sp. YK-505, Phanerochaete sordida YK-624 and Phanerochaete chrysosporium were compared. MnP from Ganoderma sp. YK-505 was superior to MnPs from P. sordida YK-624 and P. chrysosporium in stabilities against high temperature and high concentration of $H_2O$$_2$. The MnP from Ganoderma sp. YK-505 differed in pH-activity profile from other MnPs. These data suggest that MnP from Ganoderma sp. YK-505 has different structure from those of other fungi. Bleaching of hardwood kraft pulp using the MnP from ganoderma sp. YK-505 is now in progress.

  • PDF

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF

Bending behavior of squared cutout nanobeams incorporating surface stress effects

  • Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.143-161
    • /
    • 2020
  • In nanosized structures as the surface area to the bulk volume ratio increases the classical continuum mechanics approaches fails to investigate the mechanical behavior of such structures. In perforated nanobeam structures, more decrease in the bulk volume is obtained due to perforation process thus nonclassical continuum approaches should be employed for reliable investigation of the mechanical behavior these structures. This article introduces an analytical methodology to investigate the size dependent, surface energy, and perforation impacts on the nonclassical bending behavior of regularly squared cutout nanobeam structures for the first time. To do this, geometrical model for both bulk and surface characteristics is developed for regularly squared perforated nanobeams. Based on the proposed geometrical model, the nonclassical Gurtin-Murdoch surface elasticity model is adopted and modified to incorporate the surface energy effects in perforated nanobeams. To investigate the effect of shear deformation associated with cutout process, both Euler-Bernoulli and Timoshenko beams theories are developed. Mathematical model for perforated nanobeam structure including surface energy effects are derived in comprehensive procedure and nonclassical boundary conditions are presented. Closed forms for the nonclassical bending and rotational displacements are derived for both theories considering all classical and nonclassical kinematics and kinetics boundary conditions. Additionally, both uniformly distributed and concentrated loads are considered. The developed methodology is verified and compared with the available results and an excellent agreement is noticed. Both classical and nonclassical bending profiles for both thin and thick perforated nanobeams are investigated. Numerical results are obtained to illustrate effects of beam filling ratio, the number of hole rows through the cross section, surface material characteristics, beam slenderness ratio as well as the boundary and loading conditions on the non-classical bending behavior of perforated nanobeams in the presence of surface effects. It is found that, the surface residual stress has more significant effect on the bending deflection compared with the corresponding effect of the surface elasticity, Es. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams.

Physical Properties of Fe Particles Fine-dispersed in AlN Thin Films (Fe 입자를 미세 분산 시킨 AlN 박막의 물리적 성질)

  • Han, Chang-Suk;Kim, Jang-Woo
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • This paper describes the fabrication of AlN thin films containing iron and iron nitride particles, and the magnetic and electrical properties of such films. Fe-N-Al alloy films were deposited in Ar and $N_2$ mixtures at ambient temperature using Fe/Al composite targets in a two-facing-target DC sputtering system. X-ray diffraction results showed that the Fe-N-Al films were amorphous, and after annealing for 5 h both AlN and bcc-Fe/bct-$FeN_x$ phases appeared. Structure changes in the $FeN_x$ phases were explained in terms of occupied nitrogen atoms. Electron diffraction and transmission electron microscopy observations revealed that iron and iron nitride particles were randomly dispersed in annealed AlN films. The grain size of magnetic particles ranged from 5 to 20 nm in diameter depending on annealing conditions. The saturation magnetization as a function of the annealing time for the $Fe_{55}N_{20}Al_{25}$ films when annealed at 573, 773 and 873 K. At these temperatures, the amount of iron/iron nitride particles increased with increasing annealing time. An increase in the saturation magnetization is explained qualitatively in terms of the amount of such magnetic particles in the film. The resistivity increased monotonously with decreasing Fe content, being consistent with randomly dispersed iron/iron nitride particles in the AlN film. The coercive force was evaluated to be larger than $6.4{\times}10^3Am^{-1}$ (80 Oe). This large value is ascribed to a residual stress restrained in the ferromagnetic particles, which is considered to be related to the present preparation process.