Bleaching of Kraft Pulp with Lignin - Degrading Enzymes

  • Harazono, Koich (Department of Forest Products, Faculty of Agriculture, Kyushu University) ;
  • Kondo, Ryuichrto (Department of Forest Products, Faculty of Agriculture, Kyushu University) ;
  • Sakai, Kokki (Department of Forest Products, Faculty of Agriculture, Kyushu University)
  • Published : 1997.06.01

Abstract

An unbleached hardwood kraft pulp was bleached in vitro with partially purified manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624 without the addition of MnSO$_4$ in the presence of oxalate, malonate or gluconate known as manganese chelator, When the pulp was treated without the addition of MnSO$_4$, the pulp brightness increased by about 10 points in the presence of 2 mM oxalate, but the brightness did not significantly increase in the presence of 50 mM malonate. Residual MnP activity decreased faster during the bleaching with MnP without MnSO$_4$ in the presence of malonate than in the presence of oxalate. Oxalate reduced MnO$_2$ which already existed in the pulp or was produced from $Mn^{2+}$ by oxidation with MnP and thus supplied $Mn^{2+}$ to the MnP system. Thus, bleaching of hardwood kraft pulp with MnP, using manganese originally existing in the pulp, became possible in the presence of oxalate, a good manganese chelator and reducing reagent. Properties of partially purified MnPs from liquid cultures of white rot fungi, Ganoderma sp. YK-505, Phanerochaete sordida YK-624 and Phanerochaete chrysosporium were compared. MnP from Ganoderma sp. YK-505 was superior to MnPs from P. sordida YK-624 and P. chrysosporium in stabilities against high temperature and high concentration of $H_2O$$_2$. The MnP from Ganoderma sp. YK-505 differed in pH-activity profile from other MnPs. These data suggest that MnP from Ganoderma sp. YK-505 has different structure from those of other fungi. Bleaching of hardwood kraft pulp using the MnP from ganoderma sp. YK-505 is now in progress.

Keywords

References

  1. Tappi J. v.72 no.5 Paice, M. G.;L. Jurasek;C.Ho, R. Bourbonnais;F. S. Archibald
  2. Tappi J. v.73 no.8 Reid, I.D.;M. G Paice;C. Ho;L. Jurasek
  3. Tappi J. v.74 no.11 Fujita, K.;R. Kondo;K. Sakai;Y. Kashino;T. Nishida;Y. Takahara
  4. Tappi J. v.75 no.12 Murata, S.;R. Kondo;K. Sakai;Y. Kashino;T. Nishida;Y. Takahara
  5. Tappi J. v.76 no.1 Fujita, K.;R. Kondo;K. Sakai;Y. Kashino;T. Nishida;Y. Takahara
  6. Appl. Environ. Microbiol. v.59 Addleman, K.;F. Archibald
  7. Tappi J. v.75 no.3 Arbeloa, M.;J. Leclerc;G. Goma;J. C. Pommier
  8. Appl. Environ. Microbiol. v.60 Kondo, R.;K. Harazono;K. Sakai
  9. Appl. Environ. Microbiol. v.59 Paice, M. G.;I.D. Reid, R. Bourbonnais;F. S. Archibald;L. Jurasek
  10. Appl. Microbiol. Biotechnol. v.36 Bourbonnais, R.;M. G. Paice
  11. Mokuzai Gakkaishi v.40 Hirai, H.;R. Kondo;K. Sakai
  12. Appl. Environ. Microbiol. v.61 Katagiri, N.;Y. Tsutsumi;T. Nishida
  13. Appl. Environ. Microbiol. v.60 Kondo, R.;K. Kurashiki;K. Sakai
  14. Biochemistry v.27 Wariishi, H.;L. Akileswaran;M. H. Gold
  15. Biochemistry v.28 Wariishi, H.;K, Valli;M. H. Gold
  16. Biochem. Ciophys. Res. Commun. v.176 Wariishi, H.;K, Valli;M. H. Gold
  17. Biochem. Biophys. Res. Commun. v.178 Lackner, R.;E. Srebontnik;K. Messner
  18. Wood. Appl. Microbiol. Biotechnol. v.39 Dutton, M. V.;C. S. Evans;P. T. Atkey;D. A. Wood
  19. Proc. Matl. Acad. Sci. v.90 Kuan, I.;M. Tien
  20. FEMS Microbiol. Rev. v.13 Shimada, M.;D. Ma;Y. akamatsu;T. Hattori
  21. J. Biol. Chem. v.240 Swoboda, B. E. P.;V. Massay
  22. J. Biol. Chem. v.267 Wariishi, H.;K. Valli;M. H. Gold
  23. J. Biol. Chem. v.264 Wariishi, H.;H. B. Dunford;I. D. MacDonald;M. H. Gold
  24. Arch. Biochem. Biophys. v.244 Paszczynski, A.;V. Huynh;R. Crawford
  25. Arch. Biochem. Biophys. v.276 Aitken, M. D.;R. L. Irvine