• Title/Summary/Keyword: residual structure

Search Result 1,080, Processing Time 0.029 seconds

An Experiment Study on the Robust Input Shaping of Flexible Structures (유연구조물의 강인한 입력설계기법의 실험적 연구)

  • Bae, Jae-Sung;Hyun, Young-O;Kwak, Dongi-Gi;Park, Young-Guen;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.31-37
    • /
    • 2006
  • In this paper, an experimental study on the robust input shaping for control of the residual vibration of flexible structures has been investigated. Two approaches has been used for the robustness of input shaping: the first method is to increase the number of impulses, and the other includes an EI shaper using vector diagram. The input case designed by the application of the above methods has been applied to a control problem involving residual vibration of a rotating hub with two flexible appendages. It has been found by a series of experiments that the input shaper designed in this paper works well for the residual vibration control of the flexible structure.

  • PDF

Effect of Laser Surface Modification of Cemented Carbide Substrates on the Adhesion of Diamond Films (Cemented Carbide기판의 레이저 표면 개질이 다이아몬드 박막의 접합력에 미치는 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.170-176
    • /
    • 2000
  • A novel method for improving the adhesion of diamond films on cemented carbide tool inserts has been investigated. This method is based on the formation of a compositionally graded interface by developing a microrough surface structure using a pulsed laser process. Residual stresses of diamond films deposited on laser modified cemented carbides were measured as a function of substrate roughness using micro-Raman spectroscopy. The surface morphology and roughness of diamond films and cemented carbides were also investigated at different laser modification conditions. It was found that the increasing interface roughness reduced the average residual stress of diamond films, resulting in improved adhesion of diamond films on cemented carbides.

  • PDF

A Study on Residual Strength of Damaged Sandwich Composite Structure (샌드위치 복합재 구조의 손상에 의한 잔류 강도 연구)

  • Kong, Chang-Duk;Kong, Hyun-Bum;Kim, Sang-Hoon;Song, Min-Su
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2073-2079
    • /
    • 2008
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties. The quasi-static point load and damaged hole was applied to introduce the simulated damage on the Each damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation.

  • PDF

A study for the residual strain of aluminum thin film for MEMS structures (MEMS용 구조물을 위한 알루미늄 박막의 잔류응력에 대한 연구)

  • Kim, Youn-Jin;Shin, Jong-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2521-2523
    • /
    • 1998
  • Freestanding flexible microstructures fabricated from deposited thin films become mechanically unstable when internal stresses exceed critical values. The residual stress and stress gradient of aluminum thin film were examined to make sure of fabricating the reproduceable aluminium structure. For good shape of micro mirror array and microstructures, the experiment was done varying thickness and deposition rate. As the aluminium film thickness increased from 0.8${\mu}m$ to 1.6${\mu}m$, the stress gradient decreased from 11.62MPa/${\mu}m$ to 2.62MPa/${\mu}m$. The residual stress values are from 42.4MPa to 62.24MPa of tensile stresses.

  • PDF

Fatigue experiment of stud welded on steel plate for a new bridge deck system

  • Ahn, Jin-Hee;Kim, Sang-Hyo;Jeong, Youn-Ju
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.391-404
    • /
    • 2007
  • This paper presents push-out tests of stud shear connectors to examine their fatigue behavior for developing a new composite bridge deck system. The fifteen push-out specimens of D16 mm stud welded on 9 mm steel plate were fabricated according to Eurocode-4, and a series of fatigue endurance test and residual strength test were performed. Additionally, the stiffness and strength variations by cyclic loading were compared. The push-out test, when the stiffness reduction ratio of the specimens was 0.95 under cyclic load, resulted in the failure of the studs. The stiffness variation of the push-out specimens additionally showed that the application of cyclic loads reduced the residual strength. The fatigue strength of the shear connectors were compared with the design values specified in the Eurocode-4, ASSHTO LRFD and JSSC codes. The comparison result showed that the fatigue endurance of the specimens satisfies the design values of these codes.

The Effects of Temperature Change on the Bending Strength of CF/PEEK Laminates after Impact (온도변화가 CF/PEEK 적층재의 충격 후 굽힘강도에 미치는 영향)

  • 양인영;정종안;나승우
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • In this paper, when CF/PEEK laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(interlaminar separation and transverse crack) of CF/PEEK laminates and the relationship between residual lift and impact damages are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interlaces [$0^{\circ}_4/90^{\circ}_8/0^{\circ}_4$]. A steel ball launched by the air gun collides against CF/PEEK laminates to generate impact damages. And then CF/PEEK specimens with impact damages are observed by a scanning acoustic microscope under room and high temperatures. In this experimental results, various relations are experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/PEEK laminates.

Detecting Anomalies in Time-Series Data using Unsupervised Learning and Analysis on Infrequent Signatures

  • Bian, Xingchao
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1011-1016
    • /
    • 2020
  • We propose a framework called Stacked Gated Recurrent Unit - Infrequent Residual Analysis (SG-IRA) that detects anomalies in time-series data that can be trained on streams of raw sensor data without any pre-labeled dataset. To enable such unsupervised learning, SG-IRA includes an estimation model that uses a stacked Gated Recurrent Unit (GRU) structure and an analysis method that detects anomalies based on the difference between the estimated value and the actual measurement (residual). SG-IRA's residual analysis method dynamically adapts the detection threshold from the population using frequency analysis, unlike the baseline model that relies on a constant threshold. In this paper, SG-IRA is evaluated using the industrial control systems (ICS) datasets. SG-IRA improves the detection performance (F1 score) by 5.9% compared to the baseline model.

A Global Planarization of Interlayer Dielectric Using Chemical Mechanical Polishing for ULSI Chip Fabrication (화학기계적폴리싱(CMP)에 의한 층간절연막의 광역평탄화에 관한 연구)

  • Jeong, Hea-do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.46-56
    • /
    • 1996
  • Planarization technique is rapidly recognized as a critical step in chip fabrication due to the increase in wiring density and the trend towards a three dimensional structure. Global planarity requires the preferential removal of the projecting features. Also, the several materials i.e. Si semiconductor, oxide dielectric and sluminum interconnect on the chip, should be removed simultaneously in order to produce a planar surface. This research has investihgated the development of the chemical mechanical polishing(CMP) machine with uniform pressure and velocity mechanism, and the pad insensitive to pattern topography named hard grooved(HG) pad for global planarization. Finally, a successful result of uniformity less than 5% standard deviation in residual oxide film and planarity less than 15nm in residual step height of 4 inch device wafer, is achieved.

  • PDF

Evaluation of Ballistic Performance of Ceramic-Tile-Inserted Metal Block (세라믹 타일이 삽입된 금속 블록의 최적 방호구조 연구)

  • Lee, Seunghwan;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.297-304
    • /
    • 2016
  • A numerical simulation has been performed for the penetration of a long-rod penetrator into a metal block (ceramic-tile-inserted 4340-steel plate). The impact velocity is 1.5km/s at a normal incidence angle. The first two validations are conducted for a semi-infinite block measuring the depth of penetration (DOP). The material model of ceramic is the JH-2 (Johnson-Holmquist) model. The predicted DOP values are in close agreement with the experimental data. Then, the primary simulation is performed by varying the position of the confined ceramic tile for three types of thickness of ceramic tile. The residual velocity, residual mass and residual kinetic energy of the long-rod are obtained from the simulation. Based on these predicted values, the trend of the ballistic performance of the protective structure is estimated. In addition, the mass efficiency is calculated in order to determine the performance of the ceramic-tile-inserted metal block. Finally, the optimum protective structure is identified.

Crystal structure refinement and synthesis of $LiAl_5O_8-LiFe_5O_8$ ($LiAl_5O_8-LiFe_5O_8$ 합성과 결정구조 해석)

  • 조남웅;김찬욱;장세기;유광수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.244-252
    • /
    • 1997
  • The pseudo-spinel type solid solution, $LiAl_{2.5}/Fe_{2.5}O_8$ was prepared by reaction of $LiCO_3, Al_2O_3, Fe_2O_3$ mixture at 1620K, which can be used for cathode material in lithium batteries. Its structure was investigated by Rietveld profile-analysis of XRD in detail. The space group of solid solution is $P4_3$32(a=8.1293$\AA$) and the final residual index of structure refinement was about 5%. Cations $Al^{3+}, Fe^{3+}$ are located at both tetra- and octahedral-coordination and $Li^+$ ions are occupied in the octahedral 4b-, 12d-site of the inverse spinel.

  • PDF